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T
he ability to detect and size nanopar-
ticles is extremely important in the
analysis of liquid and aerosol samples

for medical, biological, and environmental
studies.1�8 Some examples of nanoparticles
that researchers have been interested in
detecting and sizing include viruses,9�11

exosomes,1 metallic labels,12,13 soot,6,14 ice
crystals in clouds,15 and engineered nano-
materials,16 among others. While there exist
various nanoparticle detection and sizing
methods, there is a lack of high-throughput
instruments that can cover a large dynamic
range of particle sizes and concentrations
within a field-portable, cost-effective and
rapid interface. Existing nonoptical methods,

such as transmission electron microscopy
(TEM), scanning electron microscopy (SEM),
and atomic force microscopy, are typically
very accurate and provide a gold standard
for particle sizing;1,4 however they are bulky,
require significant capital investment, can
be slow in image acquisition, and provide
extremely restricted fields of view (FOVs)
that limit throughput for particle sizing.
Optical techniques can be more cost-
effective and rapid; however, it is in general
difficult to overcome the challenge of ob-
taining a large enough signal-to-noise (SNR)
ratio to detect and reliably size both in-
dividual nanoparticles and populations of
nanoparticles.
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ABSTRACT Sizing individual nanoparticles and dispersions of

nanoparticles provides invaluable information in applications such as

nanomaterial synthesis, air and water quality monitoring, virology, and

medical diagnostics. Several conventional nanoparticle sizing ap-

proaches exist; however, there remains a lack of high-throughput

approaches that are suitable for low-resource and field settings, i.e.,

methods that are cost-effective, portable, and can measure widely

varying particle sizes and concentrations. Here we fill this gap using an

unconventional approach that combines holographic on-chip micros-

copy with vapor-condensed nanolens self-assembly inside a cost-effective hand-held device. By using this approach and capturing time-resolved in situ

images of the particles, we optimize the nanolens formation process, resulting in significant signal enhancement for the label-free detection and sizing of

individual deeply subwavelength particles (smaller than λ/10) over a 30 mm2 sample field-of-view, with an accuracy of (11 nm. These time-resolved

measurements are significantly more reliable than a single measurement at a given time, which was previously used only for nanoparticle detection

without sizing. We experimentally demonstrate the sizing of individual nanoparticles as well as viruses, monodisperse samples, and complex polydisperse

mixtures, where the sample concentrations can span∼5 orders-of-magnitude and particle sizes can range from 40 nm to millimeter-scale. We believe that

this high-throughput and label-free nanoparticle sizing platform, together with its cost-effective and hand-held interface, will make highly advanced

nanoscopic measurements readily accessible to researchers in developing countries and even to citizen-scientists, and might especially be valuable for

environmental and biomedical applications as well as for higher education and training programs.
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Oneway inwhich the challenge of low SNR has been
mitigated is through the use of fluorescent labels,1

although the (bio)chemistry of the detected particles
must be known a priori so that they can be efficiently
and specifically labeled with fluorophores or quantum
dots. Fluorescent optical techniques include fluores-
cence correlation spectroscopy,17 fluorescence flow
cytometry,18 and recently developed super-resolution
techniques such as photoactivated localizationmicros-
copy (PALM), stochastic optical reconstruction micros-
copy (STORM),19,20 and stimulated emission depletion
(STED) microscopy.21 Although these techniques can
provide accurate sizing data, they too suffer frommany
of the drawbacks of the nonopticalmethods: bulkiness,
capital cost, relatively slow imaging speed as well as
significantly restricted FOVs, which limit the sizing
throughput.
Label-free nonfluorescent optical methods, on the

other hand, have the advantage to quantify particle
size distributions in chemically or biologically un-
known heterogeneous samples. For particles in liquids,
two common techniques are dynamic light scattering
(DLS) and nanoparticle tracking analysis (NTA), both of
which characterize suspensions of particles using
Brownian motion. As it is a statistical method, DLS only
provides collective sizing data about particles' hydro-
dynamic diameters, without providing sizing informa-
tion on an individual particle-by-particle basis.22 As a
result of this, DLS has limited accuracy for polydisperse
samples with size heterogeneity, and in particular has
difficulty resolving bimodal (or multimodal) distribu-
tions where the modal means are either too closely
spaced or too far apart.23 In contrast, NTA tracks
individual particles and can therefore better resolve
different sizes in particle distributions.24 However, both
DLS and NTA tend to rely on bulky equipment, are
limited in the range of particle concentrations they can
handle (e.g., too much dilution results in low signal,
while high density results in high noise due to multiple
scattering events), and require sufficiently small parti-
cles (less than a few microns in diameter) such that
the Brownian motion is noticeable, which limits the
dynamic range of particle sizes that can be probedwith
these techniques.
For aerosol measurements, several other label-free

nonfluorescent nanoparticle sizing techniques are
available, including differential mobility analysis,
condensation particle counting, laser diffraction, and
diffusion size classification. Laser diffraction simply
observes the diffracted laser intensity of particles
flowing through a chamber. However, because scat-
tered intensity scales with the sixth power of a nano-
particle's diameter, it is difficult for this approach to
detect particles smaller than ∼100 nm.25 A condensa-
tion particle counter enables detection of ultrasmall
nanoparticles, and overcomes this challenge by using
the particles of interest as nuclei for the condensation

of a vapor around particles while they are still sus-
pended in the gas flow.26,27 This approach effectively
increases the particles' sizes, making them easier to
detect, although sizing accuracy may be compromised
due to differing condensation rates around particles of
different sizes. To provide higher sizing accuracy, laser
diffraction and condensation particle counting can be
combined with differential mobility analysis, which
separates airborne particles based on size by first
charging the particles, and then characterizing their
mobility within an electric field. The resultingmeasure-
ments depend on the electrical properties of the
particles as well as their size. This technique exists in
both large laboratory-based platforms, as well as rela-
tively small platforms.28,29

For nanoparticle sizing measurements in either liq-
uids or aerosols, holographic imaging provides an
attractive label-free optical approach. Because holog-
raphy captures particles' scattered fields through an
interference pattern, measured signals scale with the
third power of the of the particle diameter instead of
the sixth power that is characteristic of the scattered
intensity measurements discussed earlier. This endows
holography with better signal scaling when detecting
small particles.30 Furthermore, holographic micros-
copy provides quantitative information on both parti-
cle amplitude (e.g., absorption) as well as phase (e.g.,
refractive index), which can be used in concert to im-
prove sizing accuracy. Nonetheless, low SNR remains a
challenge for detecting and sizing particularly small
particles, and holographic imaging has historically
been used for particle sizing at the microscale, gen-
erally in conjunction with large bulky laboratory equip-
ment, such as laboratory grade optical microscopes
with relatively expensive objective lenses.8,15,31,32 On
the other hand, in the lensfree holographic imaging
platform developed in our group,33,34 the sample of
interest is placed on an optoelectronic sensor-array
with typically less than 0.5 mm gap (z2) between the
sample and sensor planes such that, under unit mag-
nification, the entire sensor active area serves as the
imaging FOV, easily reaching >20�30 mm2 with
state-of-the-art CMOS imager chips. The initial sensi-
tivity limit of this lensfree on-chip imaging approach
has been∼200�300 nm; particles with diameters smal-
ler than this are indistinguishable from background
noise. Recently, we have shown different methods of
generating self-assembled nanolenses that allow us to
detect, using on-chip holographic imaging, particles as
small as ∼40 nm, without sizing capability.9,30,35

RESULTS AND DISCUSSION

Here we report the first demonstration of single
nanoparticle sizing using on-chip microscopy, which
is achieved through a holographic microscope design
that incorporates tunable vapor condensation of nano-
lenses and time-resolved lensfree imaging in the same
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hand-held device (Figure 1). Using this portable device
and the reconstructed, time-resolved, and automati-
cally focused phase images of the sample field-of-view,
we quantified our sizing accuracy in both monodis-
perse and heterogeneous particle solutions, achieving
an accuracy of(11 nm for particles that range from 40
up to 500 nm. For larger particles, our technique still
works while the accuracy roughly scales with particle
size. As will be shown below, achieving this level of
accuracy relies on the ability to image and time-resolve
the nanolens deposition and growth in situ, which was
not possible before this work. In addition, we have
used this feature to verify our theoretical models for
the vapor condensation rate, minimal energy nanolens
shape evolution, and the impact of the growing nano-
lens on the holographic SNR. Compared to other nano-
particle sizing approaches in general, the lensfree
holographic imaging and vapor condensation plat-
form presented here provides highly advantageous
features: label-free protocols, an ultralarge particle
sizing range (∼40 nm to millimeter-scale), an imaging-
based approach that provides particle localization in
addition to sizing information, field-portability, cost-
effectiveness, and a large field of view that can handle
a wide range of particle concentrations (spanning up
to 6 orders of magnitude), as well as the potential to
achieve spatially multiplexed detection and sizing of
different target nanoparticles over a large area by
patterning different capture zones.

The lensfree holographic imaging design (Figure 1)
includes a 10 Mega-pixel complementary metal-oxide-
semiconductor (CMOS) image sensor, a transparent
sample substrate, an optical bandpass filter to provide
partial temporal coherence, and17green light-emitting-
diodes (LEDs) coupled to spatially separated multi-
mode optical fibers, which provide sufficient spatial
coherence at the sample plane for conducting in-line
holographic imaging. These multiple LEDs are used
to provide spatially shifted holograms, which can be
synthesized into a single high-resolution hologram
using a pixel super resolution technique.36�39 The
sample, a plasma-treated microscope cover glass with
adsorbed nanoparticles of interest, is placed upside-
down with the image sensor in direct contact with the
back side of the sample. Using resolution test targets,
we have verified that we can achieve deeply subpixel
resolution and are able to routinely resolve grating
patterns with submicron line-widths in this hand-held
device, which weighs less than 500 g in total.
In addition to the imaging components, the other

major custom-designed hardware in our platform is
the vapor condensation system, which consists of a
small resistive heater inside of a shallow glass dish,
which rests to the side of the optical axis in a plastic
housing fabricated via 3D printing. The glass dish is
filled with polyethylene glycol (PEG, Mn = 300 Da). A
physical shutter is included, which can isolate the
sample from the vaporization chamber, if desired.
In a typical experiment, a set of low-resolution

holograms will be acquired before any vapor conden-
sation occurs in order to provide a baseline image.
Particles that are smaller than several hundred nano-
meters are undetectable in each one of these lensfree
images. The heater will then be activated and set to
105 �C using a feedback temperature controller. Higher
temperatures can be used for faster operation, but
with less precision in results. After the system reaches
the set temperature (within ∼4 min), another set of
low-resolution lensfree holograms are acquired, with
a period of, e.g., 4 min. These sets of time-resolved
lensfree holograms are much more reliable than a
single lensfree measurement at a given time point,
and enable us to accurately size a large range of
particles with various compositions while also making
our platform immune to experimental fluctuations in,
e.g., condensation rate, vapor density, etc. as will be
detailed in our Results and Discussion Section.
During and after data acquisition, we use a custom-

written graphical user interface for processing the
acquired images (Figure 1b). This graphical interface
processes and presents a large amount of information
rapidly and in a convenient fashion, including the raw
low-resolution holograms, high-resolution holograms
synthesized using pixel super resolution, digitally re-
constructed images of the sample, and time-traces of
the signal from individual particles during the course of

Figure 1. Nanoparticle sizing platform. (a) Physical hardware
photograph and diagram. Imaging and vapor-condensed
nanolens self-assembly are performed in a single hand-held
device, which weighs less than 500 g. (b) Data analysis
graphical user interface. Using this interface, users can mea-
sure the size of specific particles and monitor the signal
enhancement provided by the self-assembled nanolenses.
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the experiment. The same interface also automatically
compensates for possible mechanical drifts in x, y, and z

of the sample between different time points. As we are
using a digital holographic approach, both amplitude
images (similar to brightfield) and phase images (similar
to phase contrast) are available after digital reconstruc-
tion.40 For the nanolens-nanoparticle complexes studied
here, we find the phase images to bemore sensitive and
we use this information channel to define the “signal” of
the particles we image and quantify, which will be
detailed and discussed in the next section.
During the course of each experiment, PEG evapo-

rates from its reservoir due to its elevated tempera-
ture. Some of this PEG vapor then condenses on
the cooler sample surface. As the PEG condenses on
the sample, it forms a continuous film that thickens
over time. In the vicinity of nanoparticles adsorbed on
the substrate, this continuous film rises in the form of a
meniscus that acts as a nanolens that increases the
scattering from the particle and helps to direct light
toward the image sensor, thereby boosting the parti-
cle's heterodyne holographic signature (Figure 2). This
increase in holographic signature enables the detec-
tion of ultrasmall subwavelength particles that could

not be detected in this platform without the use of
the vapor-condensed film, such as the 83 nm particle
example shown in Figure 2, whose size was verified
using SEM. After sufficient vapor condensation, the
PEG film becomes so thick that it begins to bury the
nanoparticle under a thick layer, resulting in a loss of
signal at late times. In Figure 2, we see this behavior in
both the experimental results (filled black circles and
accompanying reconstructed lensfree images), as well
as the simulated results (red). These simulations in-
clude 1% random white Gaussian noise added at the
sensor (hologram) plane, which generates the small
spread in simulation results whose span is indicated by
the red shaded region. These simulation results depend
on a single fitting parameter, the vapor density, which is
here assumed to be 2.0 � 1015 molecules/m3.30 With
this single fitting parameter, we find good agreement
between our simulations and the experimental results
for this 83 nm bead. The simulations used here incor-
porate physical modeling of the shape of the nanolens
as a function of time (Figure 2b), as well as optical
simulations of the hologram formation and reconstruc-
tion process.9,30 Beyond verifying our simulations, we
also use these time-resolved lensfree measurements to
identify and record the maximum signal obtained over
the course of the experiment, which correlates strongly
with particle size as will be detailed below. Therefore,
time-resolving the optimum phase signal value instead
of the signal value at a specific fixed time point
maximizes the sensitivity of our approach to small
particles and improves sizing accuracy by making the
procedure robust to variable heating temperatures and
unknown vapor densities.
In Figure 3, we have repeated the same analysis

shown in Figure 2 for 121 other spherical particles in
order to test the repeatability and accuracy of our
sizing platform. Figure 3 plots the time-resolved max-
imum phase signal (e.g., the phase value of the upper-
most black circle in Figure 2a) as a function of the true
particle size, which was measured using SEM. The
points plotted here are drawn from 5 different experi-
ments each with mixtures of bead sizes and 16�32
beads per experiment, where the throughput in this
specific case has been limited by the process of
acquiring SEM comparison images. The experiments
had overlapping size ranges to ensure repeatability
between experiments as well as consistency among
beads within a single experiment. We find our limit in
smallest detectable particle size to be approximately
40 nm, which very well coincides with 3 times the
typical background noise (standard deviation of the
pixels in a region without any particles), which is of
order 0.01 radians.
The red curve in Figure 3a shows the simulated

prediction for the reconstructed peak phases of de-
tected particles based on modeling of the vapor-
condensed nanolens shape and its influence on optical

Figure 2. Nanolens formation and growth. (a) Comparison
of experimental and simulated signals as a function of time
for an 83 nm bead (illumination wavelength: 510 nm).
Horizontal experimental error bars show the total time
required to capture the set of low-resolution holograms
that are used to synthesize a pixel super-resolved holo-
graphic image. Vertical experimental error bars have a
length equal to twice the maximum difference in phase
value between the brightest pixel and its four nearest
neighbors for a given reconstructed lensfree particle image.
The vertical span of the red curve depicts the standard
deviation of eight simulations run with different random
noise. (b) Simulated nanolens shape at the experimental
time points from (a).
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scattering. It is important to note that this curve
involves no fitting parameters, as the peak phase value
is independent of the PEG vapor density (although the
time at which this peak signal is achieved is dependent
on the vapor density); this is an important example of
how time-resolved holographic imaging significantly
improves our detection sensitivity while also making
our measurements more repeatable and robust to
experimental factors. The shaded region encompass-
ing the red line shows the standard deviation in the
spread of eight different simulation results using dif-
ferent random noise fields added at the sensor plane.
The good agreement between our experimental re-
sults and this physical model (without any fitting
parameters) also illustrates the success of our theore-
tical modeling and understanding of the mechanisms
behind the contrast enhancement provided by the
vapor-condensed nanolenses. For particles larger than
several hundred nanometers, we notice a small diver-
gence between our simulation predictions and the
experimental results. This divergence can be a result
of our thin-lens approximation used to model the
nanoparticle-nanolens system, which works well for
small particles, but not as well for larger particles.
While the red curve demonstrates our physical

modeling of the system, the blue curve in Figure 3a
is the more practically useful calibration curve for
evaluating this system as a particle sizing platform.

This blue curve is an empirical second order polyno-
mial fit (in log-space) to the experimental data, and it
serves as a calibration curve for the platform that
provides the best one-to-one relationship between
the measured peak phase and the true particle diam-
eter. The sizing error between the experimental data
and the true particle size is shown in Figure 3b. For
particlesbetween40and500nm, the root-mean-square
error is (11 nm, which is relatively independent of
particle size, indicating that it is better to characterize
the error as an absolute error rather than a relative
(percentage) error in this size range.
With the calibration curve determined, we have then

applied this platform to blind sizing of large numbers
of nanoparticles. In Figure 4, histogram sizing results
from several types of samples are shown, including
monodisperse polymer nanospheres (Figure 4a,b),
polydisperse polymer nanospheres (Figure 4c,d), non-
spherical inorganic particles (Figure 4e), and viruses
(Figure 4f). Figure 4a depicts the sizing of 50 nm
particles, which are close to our minimum measurable
size. Figure 4b shows the measurement results from
a dense sample of 100 nm beads, where more than
32 000 beads weremeasured. Due to the density of the
sample, a secondary peak corresponding to particle
clusters is also observed. We estimate that we can
detect particle surface densities in excess of 1 particle
per (5 μm)2, enabling imaging and sizing of more than
106 particles across the full 30 mm2 active area of the
sensor-array, although clusters will also be present.
Figure 4c and 4d demonstrate that using the presented
computational lensfree on-chip imaging approach, it is
possible to accurately size heterogeneous nanoparticle
populations that are typically very challenging for even
benchtop DLS instruments.
The gadolinium-silica core�shell nanocrescent

moon shape particle in Figure 4e is another example
of a sample that is very challenging for DLS due to the
nonspherical nature of these particles. These nano-
crescents are expected to find uses as high contrast
magnetic resonance imaging agents. For this sample,
manual TEM sizing (see the inset in Figure 4e) showed
that the particle diameters ranged from 120 to 200 nm.
Our results show many particles in this range, but we
also measure some particles smaller than 120 nm.
We partially attribute this discrepancy to our use of a
spherical bead calibration curve to size nonspherical
particles. While these particles' true diameters are in
the range 120�200 nm, their true heights (chords) are
typically much smaller (∼50 nm). Therefore, we would
expect these nonstandard half-shell particles to be
sized similar to nanospheres with diameters some-
where between 50 and 200 nm, depending on the
orientation of the individual particlewith respect to the
substrate, along with its size. Although the nanolens-
based sizing approach used here is more sensitive to
the height of the nanoparticle and therefore is not as

Figure 3. Sizing calibration curve and precision. (a) Recon-
structed peak phase as a function of true particle diameter
measured using SEM. Experimental measurements from 122
beads are shown (black circles), along with simulation predic-
tions (red) basedonour theoreticalmodel, andanempiricalfit
(blue) that is used to calibrate the system for particle sizing.
(b) Calibration error in particle sizing given by the horizontal
difference between the true particle diameter and the blue
empirical curve in (a). For nanoparticles in the 40�500 nm
range, the root-mean-square-error (RMSE) is 11 nm.

A
RTIC

LE



MCLEOD ET AL. VOL. 9 ’ NO. 3 ’ 3265–3273 ’ 2015

www.acsnano.org

3270

accurate as TEM for these nonspherical particles, it still
remains very useful for approximate sizing and particle
distributionmeasurements, significantly out-performing
the capabilities of traditional DLS techniques.
Next, Figure 4f demonstrates the applicability of this

technique to the sizing of biological particles, where
we have successfully sized Ad5 adenoviruses, whose
typical sizes range from 50 to 80 nm.41�43 These viral
particle sizing measurements could be potentially
useful for viral load monitoring in resource limited
settings or for quality control in the culturing and
purification of viruses for, e.g., vaccine and antiviral
drug development efforts.
To generate the histograms in Figure 4, we have

developed an automated segmentation algorithm
(Figure 5) to localize and size particles based on lens-
free phase image reconstructions. The approach here
was custom-developed in order to correctly identify
and size very small particles, which in some cases
generated signals that were very similar to twin-image
noise33 that was present around larger particles or to
random background noise. In addition to Figures 5
and 6, this procedure is also depicted in Movie S1
(Supporting Information). The algorithm begins by
computing a super-resolved hologram from a set of
low-resolution raw images.39 This pixel super-resolved
hologram is then back-propagated to multiple z2 dis-
tances to generate the phase image reconstructions in
the vicinity of the object plane. From this reconstruc-
tion we first count the largest objects, which have
a peak phase value greater than a specific threshold

(see the Methods section for details). After counting
these larger particles, their associated twin image noise
artifacts are digitally removed one by one. Then we
reduce the phase threshold value and count the
particles that are slightly smaller. This iterative count-
and-clean procedure (also see Movie S1) is repeated
five times, until the smallest particles (those with
diameter ∼40�50 nm) are counted.
The benefits of this iterative count-and-clean algo-

rithm can be seen in Figure 6a and 6b, where 56 and
40 nm particles that were initially buried in the twin
image noise of a larger (∼590 nm) particle become
clearly visible after the larger particle has been counted
and its signature digitally removed from the lensfree
image. To find the peak phase as a function of time
(e.g., Figure 2), which is correlated with the particle size
(Figure 3), we repeat this analysis over all the time-
resolved lensfree images. We then merge the peak
phase data so that for each spot, we only keep the
largest peak phase found out of all the z2 and time
values. Through our calibration experiments, we found
that there are often a number of false positives, i.e.,
particle-like noisy features that appear in our recon-
structed phase images, especially when imaging
<70 nm particles. To be able to automatically reject
such spurious nonphysical features and therefore sig-
nificantly reduce our false characterization rate, we
apply an additional focusing criterion to separate
physical particles from random noise: for each spot of
interest that falls within our dynamic phase threshold
value for particle sizing, plotting the phase as a

Figure 4. Blind nanoparticle sizing histograms. Sizing results of (a) 50 nm polystyrene beads, (b) 100 nm polystyrene beads,
(c) a mixture of 100 and 250 nm polystyrene beads, (d) a mixture of 50, 140, 250, and 500 nm polystyrene beads,
(e) gadolinium-silica nanocrescents (see text for related discussion), and (f) Ad5 adenovirus particles, whose sizes range from
50 to 80 nm.41�43 Insets show electron microscope images of typical particles. Inset in (f) is reproduced from ref 41. All scale
bars are 100 nm. Histogram inset in (e) is the result of manual TEMmeasurements of the longest nanocrescent dimension. On
the basis of our own SEM measurements, the mean sizes, standard errors of the mean, and standard deviation of the bead
populations are as follows. 50 nm:mean = 49( 1.1 nm, σ = 4.3 nm. 100 nm:mean = 101( 2.6 nm, σ = 9.4 nm. 140 nm:mean =
129 ( 0.8 nm, σ = 4.1 nm. 250 nm: mean = 234 ( 3.7 nm, σ = 12.7 nm. 500 nm: mean = 489 ( 1.4 nm, σ = 5.3 nm.
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function of reconstruction depth (z2) must show a clear
peak, indicating that the particle comes into focus at a
plausible z2. Figure 6c and 6d show an example of a
particle that focuses well and an example of a spurious
particle-like feature that does not focus well, respec-
tively. After this additional “focusing criterion” is ap-
plied, the aggregate set of peak phases that show
focusing behavior are converted to particle sizes using
the calibration curve from Figure 3, and are plotted as
histograms (e.g., Figure 4). This automated particle
detection algorithm is capable of accurately identify-
ing particles larger than∼50 nm, making it slightly less
sensitive than a human observer operating the graph-
ical user interface program (Figure 1b), where we can
achieve reliable detection of individual nanoparticles

relative to background noise down to ∼40 nm, which
also coincides with 3 times the typical background
noise in our phase reconstruction images.
In summary, we have demonstrated the fully func-

tional prototype of a high-throughput and label-free
nanoparticle sizing platform capable of sizing individ-
ual nanoparticles as small as∼40 nm with an accuracy
of (11 nm using self-assembled nanolenses and
on-chip microscopy, all in a portable and cost-effective
instrument. This platform includes the necessary hard-
ware for vaporizing PEG and time-resolved imaging of
nanoparticle samples, along with the necessary soft-
ware for controlling the nanolens formation and imag-
ing sequence, and for automated processing of the
resulting data cube. We hope that this platform will
provide an alternative to electron microscopy in
resource-limited settings (at least for particle detection
and sizing needs), as well as an alternative to dynamic
light scattering and other optical sizingmethods when
location-specific sizing distribution is required of in-
dividual nanoparticles in a complex heterogeneous
sample.

METHODS
Sample Preparation. The nanoparticle sample of interest is

suspended in water. A glass coverslip (size 22 � 22 mm,
thickness ∼150 μm) is used as a substrate. This coverslip is

plasma treated using a hand-held plasma generator (Electro-
Technic Products, BD-10AS) for 30 s to ensure the substrate is
hydrophilic. A small drop (3�7 μL) of the nanoparticle suspen-
sion is deposited on one side of the glass coverslip, and left to

Figure 6. Effects of count-and-clean algorithm and the
depth focusing criterion. (a) Phase reconstruction before
the iterative count-and-clean procedure. A large particle is
visible at the top-right with significant holographic twin-
image noise. (b) Phase reconstruction after 4 iterations of
the count-and-clean procedure. Two smaller particles that
were previously buried in the twin image noise are now
clearly visible. (c) A true particle comes into focus at an
optimal z2 value. (d) Spurious particle-like features do not
exhibit a clear optimum reconstruction z2, even though
reconstruction images at specific z2 values individually look
very similar to those in (c).Figure 5. Automated nanoparticle sizing algorithm. For

each particle image that is reconstructed using a lensfree
hologram, we find its peak phase value by digitally optimiz-
ing the reconstructed working distance z2, and the mea-
surement time t. An iterative procedure (which we term
count-and-clean) is used that progressively counts and then
removes larger objects before attempting to detect and size
smaller objects. This process prevents holographic twin
image noise associated with larger particles from being
counted as extraneous smaller particles.
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rest for between 1 and 5 min. After resting, the sample is lightly
rinsed with pure deionized (DI) water to remove any salts or
surfactants that may have been present in the stock nanopar-
ticle solutions. During this light rinsing procedure, many nano-
particles remain stuck to the substrate and are not washed
away. If left to evaporate without rinsing, dissolved salts can
form nanoscopic crystals that appear as impurities in the sizing
distributions.

Sample Imaging and Nanolens Deposition. The imaging system
consists of a portable pixel-super-resolution light source,39 an
optical bandpass filter (510 nm center wavelength with 10 nm
bandwidth), the transparent sample to be imaged, and a
10 megapixel, 1.67 μm pixel size, CMOS image sensor with USB
readout board (Imaging Development Systems UI-1492LE-M).
The sample is placed in contact with the CMOS image sensor,
where the side with adsorbed nanoparticles is facing away from
the sensor chip. The distance between the particles and the
active area of the sensor is ∼0.9 mm, including both the cover
glass thickness and the thickness of the sensor's protective
glass. The imaging system is controlled using a custom-written
LabVIEW program.

The nanolens deposition system consists of a reservoir of
liquid PEG of molecular weight 300 Da (Sigma-Aldrich, 202371),
a small resistive heater submersed within the PEG reservoir for
evaporating the PEG (Omega Engineering, KHLV-101/10), a
computer-controlled feedback temperature controller with
thermistor immersed in the PEG used to heat it to a desired
temperature (TE Technology, Inc. TC-48�20), and a shutter that
can be used to shield the sample from PEG vapor, as desired.
The temperature is set and maintained using a LabVIEW
program.

The device is operated by first capturing a set of images
before condensation to provide a baseline signal. The tempera-
ture controller is then activated, with a heating set point of
105 �C. During the condensation procedure, lensfree images are
acquired. The super-resolution imaging system captures 20
lensfree holograms for each measurement. Capturing these
20 images takes approximately 3.5 min, which can be signifi-
cantly improved with different frame-grabber hardware sys-
tems. Every 4 min, a newmeasurement is performed and a new
set of lensfree images captured. The evolution of the sample
and condensing PEG nanolenses are thus recorded throughout
the duration of the experiment.

Data Processing. Please see Supporting Information for these
methods.
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