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ARTICLE INFO ABSTRACT
Keywords: Brain tumors are responsible for high mortality and morbidity worldwide. The brain tumor treatment depends on
Enhancer of zeste homolog 2 (EZH2) identification of molecular pathways involved in progression and malignancy. Enhancer of zeste homolog 2

Drug resistance
Biomarker

EZH2 inhibitors
Non-coding RNAs

(EZH2) has obtained much attention in recent years in field of cancer therapy due to its aberrant expression and
capacity in modulating expression of genes by binding to their promoter and affecting methylation status. The
present review focuses on EZH2 signaling in brain tumors including glioma, glioblastoma, astrocytoma, epen-
dymomas, medulloblastoma and brain rhabdoid tumors. EZH2 signaling mainly participates in increasing pro-
liferation and invasion of cancer cells. However, in medulloblastoma, EZH2 demonstrates tumor-suppressor
activity. Furthermore, EZH2 can regulate response of brain tumors to chemotherapy and radiotherapy. Various
molecular pathways can function as upstream mediators of EZH2 in brain tumors including IncRNAs and miR-
NAs. Owing to its enzymatic activity, EZH2 can bind to promoter of target genes to induce methylation and
affects their expression. EZH2 can be considered as an independent prognostic factor in brain tumors that its
upregulation provides undesirable prognosis. Both anti-tumor agents and gene therapies such as siRNA have
been developed for targeting EZH2 in cancer therapy.

Abbreviations: BBB, blood-brain barrier; TMZ, temozolomide; EMT, epithelial-to-mesenchymal transition; MMPs, matrix metalloproteinases; Pc, polycomb; PcG,
polycomb group; EZH, enhancer of zeste homolog; PCRs, polycomb repressive complexes; AR, androgen receptor; siRNA, small interfering RNA; shRNA, short hairpin
RNA; PROTACsS, proteolysis targeting chimeras; EED, embryonic ectoderm development; GBM, glioblastoma; PTEN, phosphtase and tensin homolog; STAT3, signal
transducer and activator of transcription 3; IncRNAs, long non-coding RNAs; EGFR, epidermal growth factor receptor; NF-kB, nuclear factor-kappaB; BP, n-buty-
lidenephthalide; TGF-p, transforming growth factor-beta; mTOR, mammalian target of rapamycin; mTORC1, mTOR complex 1; TERT, telomerase reverse tran-
scriptase; ATM, ataxia-telangiectasi-mutated; ATRX, alpha thalassemia/mental retardation syndrome X-linked; PARS, Prader Willi/Angelman region RNA 5; RISC,
RNA-induced silencing complex; NUSAP1, nucleolar and spindle associated protein 1; MMP-9, matrix metalloproteinase-9; MELK, maternal embryonic leucine-zipper
kinase; EVs, extracellular vesicles; SIK1, serine/threonine-protein kinase 1; EPNs, ependymomas.
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1. Introduction

The brain tumors are responsible for high mortality and morbidity
around the world and due to their anatomic position and intrinsic fac-
tors, treatment of these cancers is challenging [1,2]. The treatment of
brain tumors with pharmacological agents seems to be difficult, as
blood-brain barrier (BBB) prevents entrance of drugs and therapeutic
compounds to brain [3-5]. A number of conventional therapies are
utilized in brain tumor treatment that surgery and radiotherapy are the
most common treatment modalities. Surgery is not recommended due to
injuries to normal tissue brain. Furthermore, surgery is not effective in
advanced stages of brain tumors, when cancer cells have diffused to
neighboring and distant tissues. Radiotherapy also has its own disad-
vantageous including side effects, normal cell necrosis and vasculopathy
[1,2]. In addition, due to their aggressive behavior, brain tumors are
able to develop resistance to radiotherapy [6-8]. Chemotherapy is
another option in brain tumor therapy, and drug resistance, side effects
and presence of BBB reduce potential of chemotherapy in brain tumor
suppression [9-11]. For instance, temozolomide (TMZ) is the most
well-known chemotherapeutic agent in treatment of glioblastoma
(GBM), but its bioavailability is low in brain and about 20% of its con-
centration is observed in central nervous system [12]. Immunotherapy
can be considered as a new and emerging therapy for brain tumors.
However, delivery of immuno-regulatory agents to brain is a challenge
and brain tumors have an intrinsic ability in achieving
immuno-suppressor activities [13-17].

Therefore, novel strategies should be considered in treatment of
brain tumors. Epigenetic alterations commonly occur in brain tumors to
ensure their malignancy and progression [18]. The expression levels of
genes undergo changes in brain tumors. For instance, STAT3 phos-
phorylation at tyrosine705 occurs to enhance brain tumor malignancy
[19]. The activation of epithelial-to-mesenchymal transition (EMT) by
EEF1A2 also occurs in brain tumors and mediates their metastasis [20].
The expression level of matrix metalloproteinases (MMPs) such as
MMP-2 increases in brain tumors to promote their progression and in-
vasion [21]. Hence, it is vital to identify and understand molecular
landscapes responsible for brain tumor progression and then, gene
therapy can be used for targeting them. Similar to other therapies, gene
therapy has also problems in brain tumor therapy due to presence of BBB
that can be addressed using nanostructures [22].

The present review focuses on EZH2 signaling and its role in pro-
gression of brain tumors. First, EZH2 signaling and its function in
oncology are described and then, we specifically focus on EZH2
expression and mutation in various brain tumors based on pre-clinical
and clinical studies. Future experiments can focus on developing gene
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therapy for targeting EZH2 signaling to effectively treat brain tumors.
2. EZH2 in oncology

It was found four decades ago that drosophila with mutation for
Polycomb (Pc), has defects in body segmentation [23]. Further in-
vestigations revealed that Pc is responsible for encoding a negative
regulator of homeotic genes involved in segmentation [24]. Then, a set
of genes known as Polycomb group (PcG) were discovered that their
mutation leads to generation of a phenotype similar to Pc, but it func-
tions in mammalian cells [25]. PcG proteins are found in multiprotein
complexes including Polycomb repressive complexes (PCRs) that have
two distinct members, known as PCR1 and PCR2. PCRs are able to
provide post-translational modification of proteins via affecting chro-
matin structure to induce gene silencing. The process of gene silencing
by PCR2 is of interest. PCR2 has two main components including
enhancer of zeste homolog 1 (EZH1) and EZH2 as enzymatic subunits
that mediate trimethylation of Lys 27 of histone H3 (H3K57me3). The
EZH2 should form complex with other noncatalytic proteins including
EED, SUZ12 and RbAp48/46 to obtain its enzymatic activity. Besides,
EZH2 has a domain at its COOH-terminus, known as SET that mediates
its methyltransferase activity [26]. EZH2 has a unique structure and
each of its domains are responsible for a certain role in cells. Overall,
EZH2 has four distinct domains. The histone methyltransferase activity
and its recognition are mediated by SET and CXC domains; the capacity
of EZH2 in binding to DNA is provided by two SANT domains, leading to
chromatin remodeling and transcriptional modulation [27,28]; ncRBD
is responsible for providing the interaction of EZH2 with non-coding
RNAs (ncRNAs) [29]. Fig. 1 demonstrates EZH2 signaling and related
molecular pathways.

Increasing evidence demonstrates the role of EZH2 in cancer and its
ability in regulating molecular landscapes that are responsible for tumor
growth and aggressive behavior [30-35]. The EZH2 overexpression
prevents apoptosis and autophagy in liver tumor to enhance progres-
sion. As a tumor-suppressor, microRNA (miRNA)— 638 down-regulates
EZH2 expression to induce both apoptosis and autophagy in liver tumor
cells [36]. Furthermore, LINC00152 upregulation enhances EZH2
expression to induce ZEB1 expression, resulting in EMT and oxaliplatin
resistance of esophageal tumor cells [37]. In respect to tumor-promoting
role of EZH2, its down-regulation can restrict tumor progression. In this
way, HOTAIR/STAT3 axis stimulates EZH2 expression to diminish
proapoptotic proteins and to enhance cell cycle progression [38]. It has
been reported that colorectal tumor cells that are in III and IV stages,
demonstrate high expression level of EZH2. Therefore, upregulation of
EZH2 is vital for advanced stages of tumors [39]. EZH2 activation by
upstream mediators can affect pathways that reduce tumor progression.

Fig. 1. A schematic representation of EZH2
signaling. The EZH2 has the capacity of binding
to promoter of target genes to affect their
expression levels. The H3K27me3 part of EZH2
contributes in regulating gene expression after
binding to promoter. As it is shown, EZH2 has
DNA-binding domain, a domain for interaction
with non-coding RNAs, a part related to meth-
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Table 1
The EZH2 expression profile in various tumors.
EZH2 Cancer type Remarks Refs
expression
Upregulation Nasopharyngeal EZH2 induces EMT in increasing [46]
carcinoma tumor metastasis
miRNA-506 suppresses EMT-
mediated metastasis via EZH2
down-regulation
Upregulation Lung cancer A combination of EZH2 inhibitors [47]

(GSK343 or DZNep) with EGFR-

TKIs effectively prevent gefitinib

resistance

Down-regulation of TCF3 by EZH2 [48]
and DNMT3BEnhancing

proliferation and survival rate of

tumor cells

Reducing expression level of EGR1 [49]
by EZH2 in a PRC2-dependent
mannerEnhancing both

proliferation and migration

Overexpression of cytoplasmic [50]
EZH2Enhancing migratory ability

of tumor cells

Reducing expression level of EZH2 [51]
by siRNA leads to an increase in

FOXC1 expression, mediating drug
resistance and unfavorable

prognosis

Cooperation of EZH2 and KDM2B [52]
in triggering PI3K/Akt signaling

pathway, enhancing tumor

stemness

EZH2 enhances expression level of [53]
BMI by reducing miRNA-200c

expression at post-transcriptional

level

Overexpression of EZH2 in 83.3% [54]
of benign lesionsPositive

association with tumor stage

Upregulation of IncRNA SNHG7 by [55]
SplEnhancing EZH2 expression

and mediating KLF2

expressionExerting tumor-

promoting activity

Upregulation Endometrial

cancer

Upregulation Breast cancer

Upregulation Breast cancer

Not reported Breast cancer

Upregulation Colorectal cancer

Upregulation Hepatocellular

carcinoma

Upregulation Papillary thyroid

cancer

Upregulation Ovarian cancer

For instance, LINP1 recruits EZH2 and its partners LSD1 and DNMT1 to
diminish expression levels of KLF2 and PRSS8, enhancing cervical tumor
growth and preventing apoptotic cell death [40]. To decrease expression
of target gene, EZH2 utilizes its H3K27 trimethylation activity [41].
Besides, upregulation of EZH2 in tumor leads to undesirable prognosis
and showing it as promising target [42]. EZH2 inhibitors can reduce
tumor malignancy and sensitize tumor to cell death [43,44]. In addition
to synthetic inhibitors, there have been efforts in developing phyto-
chemicals with capacity in decreasing EZH2 expression. It has been re-
ported that emodin prevents the interaction of androgen receptor (AR)
and EZH2 to interfere with growth and invasion of hepatocellular tumor
[45]. Table 1 provides an overview of EZH2 upregulation and
down-regulation in different tumors.

3. EZH2 inhibitors: pharmacological and genetic interventions

As EZH2 signaling causes cancer progression and can interfere with
anti-tumor immunity, attention has been directed towards its inhibition
in effective cancer therapy. To date, various nucleic acid drugs have
been applied in EZH2 regulation. The small interfering RNA (siRNA) is
one of them that its co-delivery with etoposide using polymeric nano-
particles, exerts synergistic cancer therapy and sensitizes lung cancer
cells to etoposide [56]. The delivery of EZH2-siRNA by iron nano-
structures elevates sensitivity of ovarian cancer cells to cisplatin
chemotherapy [57]. The short hairpin RNA (shRNA) is another genetic
tool capable of reducing EZH2 expression in cancer therapy. The
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proliferation and metastasis rates of prostate cancer cells undergo
down-regulation by EZH2-shRNA [58]. The HIF-1a is silenced epige-
netically using EZH2-CRISPR/Cas9 and prevents immunosuppression in
cancer [59]. Therefore, genetic tools are promising candidates in tar-
geting EZH2 and regulating its expression profile for effective cancer
therapy [60].

In addition to gene therapy, pharmacological compounds can be
utilized for targeting EZH2 signaling in cancer therapy. The first report
of EZH2 inhibitor returns to 2007 that Tan and colleagues discovered 3-
deazaneplanocin A (DZNep) that reduces EZH2 expression and di-
minishes H3K27me3 levels to stimulate apoptosis in breast and colon
tumor cells [61]. However, there were some concerns about specificity
of DZNep in targeting EZH2, as this inhibitor indirectly affects EZH2 and
its capacity in apoptosis induction is attributed to PRC2 pathway sup-
pression [62]. Therefore, efforts were performed to discover other EZH2
inhibitors in disease treatment, particularly cancer therapy with high
specificity. EPZ005687 was then used for targeting EZH2 and it targets
EZH2 with more than 500-fold specificity compared to other protein
methyltransferases [30]. EPZ005687 can reduce H3K27me3 levels in a
concentration-dependent manner and shows cytotoxicity against
various cancers including breast cancer, prostate cancer and lymphoma.
The GSK126 is another EZH2 inhibitor that shows higher specificity
compared to EPZ005687. Based on an experiment, GSK126 shows more
than 1000 specificity for EZH2 compared to other protein methyl-
transferases [63,64]. Furthermore, in vivo application of GSK126 led to
significant decrease in progression of lymphoma [64]. The first EZH2
inhibitor with oral bioavailability was UNC1999. However, it affects
both EZH2 and EZHI, as specificity of UNC1999 is 10-fold higher for
EZH2 compared to EZH1 that is not significant [65]. The
down-regulation of EZH2 by salinomycin sensitizes colon cancer cells to
apoptosis via upregulation of death receptor 4 (DR4) [66]. The prote-
olysis targeting chimeras (PROTACs) have been developed for degra-
dation of EZH2 signaling and inducing anti-proliferative activity [67].
The YM181 and YM281 are other new emerging degraders of EZH2 that
can effectively suppress lymphoma progression [68]. The embryonic
ectoderm development (EED) promotes enzymatic activity of EZH2.
Therefore, novel inhibitors for EED-EZH2 interaction have been devel-
oped [69,70]. The astemizole is able to suppress EED-EZH2 protein--
protein interaction in triggering cell cycle arrest (GO/G1 phase) and
impairing lymphoma growth [71]. The chidamide is suggested to reduce
expression level of EZH2, leading to inhibition of Smo/Gli-1 axis. This
EZH2 inhibitor impairs growth of leukemia cells and enhances their
drug sensitivity [72]. A recent experiment has developed prodrugs based
on pyridine-derived phosphate to suppress EZH2 signaling and to
disrupt progression of leukemia in vivo [73]. To date, three catalytic
EZH2 inhibitors are being utilized in phase I/1I clinical trials including
lirametostat, valemetostat and tazemetostat. After the approval of
tazemetostat by FDA for application in treatment of sarcoma and lym-
phoma, this EZH2 inhibitor showed rise in market [74]. A phase I
clinical trial used tazemetostat in lymphoma treatment and it was
well-tolerated and showed high anti-tumor activity [75]. Recently,
phase II clinical trial utilized tazemetostat for lymphoma and it again
demonstrated high safety profile with meaningful results in cancer
treatment [76]. Based on these findings, significant attempt should be
made in introducing EZH2 inhibitors with high specificity and safety for
treatment of cancer patients. Therefore, pharmacological inhibitors of
EZH2 not only impair cancer progression, but also improve its drug
sensitivity [77].

4. EZH2 in glioblastoma

Glioblastoma (GBM) is a primary brain tumor that patients with this
malignant cancer have undesirable prognosis and low five-year survival
rate of 5.5% [78]. The drug resistance, heterogeneity and infiltrative
paradigms make it difficult to take complete resection of GBM [79].
GBM demonstrates abnormal methylation patterns and significant
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changes occur in its genetic and epigenetic profiles [80,81]. Gene mu-
tations play a significant role in GBM development and progression
[82-85]. The management and treatment of GBM are of importance, as
for instance, it causes 2500 deaths annually in UK [86]. Furthermore, up
to 250,000 deaths worldwide result from tumors in central nervous
system [87]. In addition to tumor resection, radiotherapy and chemo-
therapy are also commonly utilized in GBM therapy. However, no sig-
nificant changes have been made in survival of GBM patients [2,88].
Therefore, novel strategies should be made in this case.

In order to ensure progression of GBM cells, EZH2 is modulated by
various factors and it also affects different targets. The phosphatase and
tensin homolog (PTEN) are tumor-suppressor undergoing mutations,
deletions and down-regulation in carcinogenesis. PTEN negatively af-
fects cancer progression via suppressing PI3K/Akt axis [89-91]. Recent
experiments have confirmed anti-tumor activity of PTEN signaling in
GBM. PTEN ubiquitylation by Smurfl as oncogenic factor, leads to
cancer proliferation and viability [92]. LINC00470 recruits DNMT3a via
binding to MYC to induce PTEN methylation, resulting in GBM prolif-
eration and migration [93]. Glycolysis is responsible for malignant and
abnormal growth of GBM cells. PTEN signaling suppresses glycolysis via
PGK1 down-regulation to impair GBM progression [94]. A recent
experiment has revealed association between EZH2 and PTEN in GBM.
In this case, E2F7 undergoes upregulation in GBM cells and enhances
EZH2 expression by binding to its promoter. Then, H3K27me3 di-
minishes PTEN expression, resulting in PI3K/Akt signaling activation
and subsequent increase in proliferation and migration of GBM cells
[95]. In addition to PTEN, STAT3 plays a significant role in regulating
progression of GBM cells. STAT3 enhances Bcl-2 expression to suppress
apoptosis in GBM cells. As a tumor-suppressor, miRNA-519a reduces
Bcl-2 expression via STAT3 signaling inhibition to promote GBM
sensitivity to temozolomide [96]. STAT3 inhibition promotes survival of
xenograft model of GBM [97]. Therefore, attention has been directed
towards targeting STAT3 signaling in GBM and identification of mo-
lecular pathways involved in its regulation [98,99]. EZH2 phosphory-
lation occurs in GBM and it increases STAT3 expression via inducing its
methylation. Then, STAT3 signaling exerts its oncogenic activity and
promotes progression of GBM cells [100].

miRNAs are short ncRNAs with implication in various tumors
[101-104]. miRNA-758-5p decreases expression level of ZBTB20 to
impair proliferation and invasion of GBM cells [105]. Furthermore,
upregulation of miRNA-221 ensures resistance of GBM cells to temo-
zolomide and radiotherapy [106]. A recent experiment has focused on
miRNA and EZH2 interaction in GBM. In this case, EZH2 binds to
miRNA-9 and reduces its expression. Then, an increase occurs in
expression level of CXCR4 to enhance proliferation and invasion rates of
GBM cells [107]. On the other hand, miRNAs can regulate EZH2
signaling in GBM. miRNA-137 is considered as a tumor-promoting factor
in GBM where down-regulation of miRNA-137 occurs in hypoxia to
promote drug resistance and malignancy of GBM cells [108]. LncRNA
HAS2-AS1 reduces miRNA-137 expression via sponging to ensure GBM
progression [109]. EZH2 upregulation in GBM results in angiogenesis
and increased proliferation. miRNA-137 impairs growth of GBM cells
and suppresses angiogenesis via EZH2 down-regulation [110].
miRNA-101 is another tumor-suppressor factor that its expression shows
down-regulation in GBM to pave the way for overexpression of EZH2,
leading to growth, metastasis and angiogenesis [111]. A well-known
pathway for reducing miRNA expression level by EZH2 is inducing
methylation. DNMT1 and EZH2 jointly cooperate in methylation of
miRNA-200b and miRNA-429 to diminish their expression and to
elevate GBM progression [112].

In addition to miRNAs, IncRNAs are involved in modulating pro-
gression of tumor cells [113]. LncRNA XIST is suggested to promote
growth and metastasis of GBM cells via down-regulating miRNA-448
and subsequent upregulation of ROCK1 [114]. Down-regulation of
let-7 g-5p by IncRNA NEAT1 results in temozolomide resistance of GBM
cells [115]. Most experiments demonstrate that IncRNAs regulate GBM
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progression via affecting miRNAs [116]. By sequestering away EZH2,
G9a and Dnmts from promoter of HOXA1, IncRNA HOTAIRM1 increases
growth and migration rates of GBM cells [117]. The epidermal growth
factor receptor (EGFR) can function as upstream mediator in triggering
IncRNA expression in GBM cells. For this purpose, EGFR stimulates
STATS3 and nuclear factor-kappaB (NF-kB) pathway to enhance expres-
sion level of IncRNA NEAT1. Then, NEAT1 binds to EZH2 and induces
trimethylation of H3K27, resulting in activation of Wnt/p-catenin axis
and subsequent increase in GBM malignancy [118]. LncRNA H19 is a
new emerging IncRNA in GBM where its overexpression mediates poor
prognosis and increases proliferation, migration and angiogenesis
[119-121]. In promoting GBM progression, IncRNA H19 recruits EZH2
to promoter of NKD1 to reduce its expression, resulting in an increase in
tumorigenesis and viability of tumor cells [122]. In fact, EZH2 helps the
IncRNAs to epigenetically affect their target genes in modulating GBM
progression. LncRNA AGAP2-AS1 undergoes overexpression in GBM and
is correlated with undesirable prognosis in cancer patients. TFPI2
functions as tumor-suppressor and reduces proliferation of GBM cells,
while it induces apoptosis. Mechanistically, IncRNA AGAP2-AS1 en-
hances GBM progression via recruiting EZH2 and epigenetic silencing of
TFPI2 [123]. Therefore, inhibition of IncRNA/EZH2 axis promotes
apoptosis in GBM cells and suppresses their cell cycle progression [124,
125]. Notably, expression level of IncRNAs can be modulated by other
molecular pathways in GBM. SOX transcription factors are a well-known
family in regulating cancer progression by affecting their growth, cell
cycle progression, apoptosis and therapy response. Targeting and
regulating expression level of SOX transcription factors are of impor-
tance in cancer therapy [126-130]. SOX9 is considered as
tumor-promoting factor in GBM and its down-regulation by miRNA-30c
and miRNA-101 leads to GBM progression disruption [131-133]. A
recent experiment has shown that SOX9 is able to promote expression
level of IncRNA PXN-AS1 in GBM. Then, overexpressed PXN-AS1 re-
cruits EZH2 to promoter of DKK1 to induce its methylation and pave the
way for GBM carcinogenesis [134].

In respect to the role of EZH2 in affecting GBM progression, it can be
considered as a reliable biomarker in clinical studies. EZH2 is an onco-
genic factor in GBM and its upregulation mediates undesirable prognosis
[135]. The overexpression of EZH2 occurs in 69.2% of GBM cases and it
is an independent prognostic factor [136]. The simultaneous suppres-
sion of EZH2 and PI3K pathways diminishes angiogenesis and metastasis
in GBM and exerts synergistic impact [34]. EMT commonly occurs in
GBM via reducing E-cadherin levels and enhancing vimentin and
N-cadherin levels to promote metastasis and invasion [137-140]. The
n-butylidenephthalide (BP) is a small molecule that reduces expression
level of AXL. Then, EZH2 expression reduces and transforming growth
factor-beta (TGF-p) signaling inhibition occurs, leading to reversing
EMT and decreasing metastasis of GBM cells [141].

The mammalian target of rapamycin (mTOR) has two subunits
including mTOR complex 1 (mTORC1) and mTORC2. The mTOR
signaling is suggested to have a tumor-promoting role in GBM and its
inhibition by anti-tumor compounds including arctigenin and galbanic
acid significantly impairs GBM progression [142-144]. A recent exper-
iment has revealed a novel signaling network in which mTORC1 and
mTORC2 cooperate to regulate EZH2 and GBM progression. The
mTORC1 involves in increasing expression level of EZH2, while
mTORC2 controls S-adenosylmethionine generation in affecting histone
methylation. The mTORC1 and mTORC2 jointly cooperate in triggering
H3K27 trimethylation and enhancing GBM survival both in vitro and in
vivo [145]. According to these tumor-promoting functions of EZH2,
there have been efforts in targeting EZH2 in GBM therapy. A recent
experiment designed two EZH2 inhibitors including UNC1999 and
GSK343 to reduce activity of H3K27me3 in a time- and dose-dependent
manner. These two small molecule inhibitors of EZH2 demonstrated
higher anti-tumor activity compared to temozolomide and were able to
suppress growth and EMT in GBM [146]. EZH2 can even regulate
metabolism of GBM cells and their DNA damage responses. It has been
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Table 2

EZH2 signaling as an oncogenic pathway in GBM.
Signaling network Remarks Refs
miRNA-138/EZH2/ Inhibiting progression of GBM [160]

CDK4/6/pRb-E2F1 Presence of feedback loopInducing cell cycle

arrest at G1/S phaseSuppressing EZH2 and

downstream targets by miRNA-138

- Sustained inhibition of EZH2 signaling exerts an [161]
oncogenic role and changes cell fate, leading to
increase in proliferation, DNA damage repair and
stimulation of pluripotency network

EZH2/c-Myc Preserving cancer stem cell features of GBM [162]
cellsOverexpression of c-Myc by EZH2
Akt/EZH2/STAT3 Induction of Akt/EZH2/STATS3 axis enhances [163]

cancer stem cell features in GBMMelatonin

functions as tumor-suppressor and reduces GBM

progression via suppressing EZH2

Enhancing GBM progression via triggering [164]

glycolysisInducing metabolic

reprogrammingDown-regulation of EAF2 by

EZH2Upregulation of HIF-1a

Inducing NOTCH1 signaling by EZH2Melatonin [165]

suppresses cancer stem cell features in GBM via

EZH2 down-regulation

Overexpression of E2F7 in GBMAssociation with [95]

undesirable prognosis of GBM

patientsOverexpression of EZH2 by E2F7 and

subsequent PTEN signaling inhibitionTriggering

Akt/mTOR signaling to increase GBM

progression

Increasing GBM progressionLncRNA HOTAIRM1 [117]

enhances HOXA1 expression via sequestering

EZH2 away from its promoter

EZH2 phosphorylation in GBM enhances [100]

carcinogenesis and cancer stem cell like

featuresActivation of STAT3 signaling by

phosphorylated EZH2

EGFR/NEAT1/EZH2/ Increased GBM progressionEGFR promotes [118]
Wnt expression of IncRNA NEAT1Inducing Wnt

signaling via EZH2

Down-regulation of miRNA-9 by EZH2Enhancing ~ [107]

EZH2/EAF2/HIF-1a

EZH2/NOTCH1

E2F7/EZH2/PTEN/

Akt/mTOR

HOTAIRM1/EZH2/
HOXA1

EZH2/STAT3

EZH2/miRNA-9/

CXCR4 GBM progression via CXCR4 upregulation
HOTAIR/EZH2 Enhancing cancer proliferationMediating cell [166]
cycle progressionLncRNA HOTAIR exerts its
oncogenic role via activating EZH2 signaling
EZH2/AXL Upregulation of AXL by EZH2 to increase growth  [167]

and metastasis of GBM cells
EZH2/miRNA-206/ Down-regulation of miRNA-206 by [168]
Twist EZH2Enhancing progression and migration of
GBM cells via Twist upregulation

reported that telomerase reverse transcriptase (TERT) functions as up-
stream mediator and enhances EZH2 expression in GBM.
Ataxia-telangiectasia-mutated (ATM) phosphorylation undergoes a
decrease by TERT/EZH2 axis and elevates lipid accumulation GBM
[147]. Microglia involve in immune system and their transformation to
M1 phenotype in tumor microenvironment can suppress GBM progres-
sion. In triggering immunosuppression, EZH2 prevents remodeling of
microglia in GBM [148]. TMZ is a well-known chemotherapeutic agent
in GBM therapy. However, GBM cells have obtained resistance to its
anti-tumor activities [149,150]. It has been reported that EZH2 upre-
gulation in GBM prevents TMZ-mediated apoptosis in GBM cells and
inhibits cell cycle arrest [151]. Overall, studies highlight
tumor-promoting and prognostic roles of EZH2 in GBM and its inhibition
as a promising strategy in GBM therapy [152-159]. Table 2 summarizes
EZH2 signaling and related molecular pathways in GBM progression.
Fig. 2 shows the role of EZH2 signaling in GBM.

5. EZH2 in glioma
Similar to GBM, EZH2 signaling plays an oncogenic role in glioma

and reducing its expression interferes with progression of tumor cells.
Glioma stem cells enhance expression level of EZH2 to ensure their
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progression. Inhibiting EZH2 signaling impairs growth and progression
of glioma stem cells [169]. HK27M-expressing glioma cells need PCR2 to
promote their growth. The application of small molecule inhibitors of
EZH2 impairs glioma progression via enhancing expression level of p16,
as tumor-suppressor factor [170]. The TMZ resistance also occurs in
glioma and EZH2 signaling involves in this condition. The mechanism
for inducing TMZ resistance by EZH2 in glioma is based on DNA repair.
Alpha thalassemia/mental retardation syndrome X-linked (ATRX)
shows upregulation in glioma cells and mediates their resistance to TMZ
chemotherapy. STAT5b/TET2 induces DNA methylation to enhance
ATRX expression in glioma cells. Then, ARTX recruits EZH2 and medi-
ates H3K27me3 enrichment to decrease FADD expression, leading to
PARP1 stabilization and subsequent resistance in glioma cells that has
been confirmed in vitro and in vivo (pre-clinical stage) [171]. A clinical
study has shown that changes in EZH2 expression at protein and mRNA
levels can provide condition for malignant transformation of glioma
cells [172]. Hence, future experiments can be directed towards targeting
EZH2 signaling in glioma therapy.

In previous section, we highlighted that non-coding RNAs participate
in progression of brain tumors. Recent experiments also showed
abnormal expression of miRNAs in glioma [173-175]. miRNA-935
functions as tumor-suppressor factor and reduces expression level of
HIF-1a to suppress proliferation, invasion and angiogenesis of glioma
cells [176]. miRNA-525-5p suppresses EMT mechanism to impair
metastasis of glioma cells [177]. In contrast, there are tumor-promoting
miRNAs such as miRNA-5188 that induce PI3K/Akt axis to enhance
progression of glioma cells [178]. miRNA and EZH2 interaction de-
termines progression of glioma cells. miRNA-32 undergoes
down-regulation in glioma, while EZH2 demonstrates an increase in
expression. Restoring miRNA-32 expression impairs migration and
growth of glioma cells via binding to 3/-UTR of EZH2 and decreasing its
expression [179]. miRNA/EZH2 axis can be considered as a prognostic
factor in glioma patients. miRNA-524-5p and miRNA-324-5p function as
tumor-suppressor factors in glioma. Increasing expression level of these
miRNAs suppresses EZH2 signaling to diminish proliferation rate of
glioma cells and enhance their sensitivity to temozolomide chemo-
therapy [180]. One of the interesting points is the transfer of miRNAs by
exosomes to modulate cancer progression. Briefly, exosomes have an
average particle size of 100 nm and can transport lipids, proteins and
nucleic acids between cells [181-184]. A recent experiment has shown
that exosomes derived from mesenchymal stem cells are able to deliver
miRNA-133b to glioma cells. In this case, exosomal miRNA-133b re-
duces expression level of EZH2 to suppress Wnt/p-catenin axis, leading
to a decrease in growth and invasion of glioma cells [185]. Therefore,
inhibiting EZH2 hyperactivation by miRNAs can result in a significant
decrease in progression of glioma cells [186]. On the other hand, EZH2
is able to regulate miRNA expression to affect tumor microenvironment
of glioma cells. The macrophages are abundantly found in tumor
microenvironment and they have two phenotypes including M1 and M2.
Macrophages with M2 polarization have tumor-promoting role and can
enhance proliferation and invasion of cancer cells [187-189]. EZH2
upregulation in glioma cells is in favor of miRNA-454-3p down--
regulation to inhibit PTEN signaling, leading to M2 polarization of
macrophages and enhancing glioma progression [190].

Similar to miRNAs, IncRNAs can regulate proliferation, invasion and
therapy response of glioma cells via targeting various molecular path-
ways such as PTEN, Akt, miRNAs and p21 [191-196]. LncRNA Prader
Willi/Angelman region RNA 5 (PAR5) undergoes down-regulation in
glioma cells and tissues. Low expression of PAR5 determines reduced
survival of patients with glioma. The anti-tumor activity of PARS in
glioma is related to down-regulating EZH2 expression to suppress
growth and metastasis [197]. In contrast, the expression level of IncRNA
PVT1 undergoes overexpression in glioma cells. LncRNA PVT1 upre-
gulation leads to undesirable prognosis in glioma and enhances growth
and metastasis of cancer cells via EZH2 upregulation [198]. miRNA-137
is considered as a tumor-suppressor factor and reduces EZH2 expression
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Fig. 2. The role of EZH2 signaling in GBM. The proliferation, apoptosis and glycolysis in GBM cells are tightly modulated by EZH2 signaling. The miRNAs and
IncRNAs are the most-well known upstream mediators of EZH2 signaling in GBM. Furthermore, EZH2 has capacity in regulating miRNA expression such as miRNA-9,
— 200b and — 429 to affect growth and apoptosis in GBM. Other molecule pathways such as STAT3 and TFPI2 are affected by EZH2 in GBM.

to impair progression of glioma cells. As upstream mediator, IncRNA
HAS2-AS1 reduces miRNA-137 expression via sponging to induce EZH2
signaling, promoting glioma growth and metastasis [199]. The
down-regulation of PTEN in glioma can be performed by IncRNAs,
miRNAs and other upstream mediators [200-202]. EZH2 is able to bind
to promoter of PTEN and diminish its expression. The upregulation of
EZH2 in glioma occurs by IncRNA ANCR to suppress PTEN signaling and
pave the way for apoptosis inhibition in glioma cells [203]. Similar to
miRNAs, EZH2 modulates IncRNA expression by binding to its pro-
moter. LncRNA MEG3 possesses a tumor-suppressor role in glioma and
its expression demonstrates down-regulation, while EZH2 and
miRNA-21-3p show an increase in expression. EZH2 binds to MEG3
promoter and enriches H3K27me3 to reduce MEG3 expression, resulting
in miRNA-21-3p overexpression and increased glioma progression
[204]. As more experiments are performed, more IncRNAs involved in
regulating EZH2 expression are identified [205].

Both EZH2 and BET pathways are responsible for glioma progression
and utilization of their inhibitors paves the way for suppressing cancer
proliferation and inducing apoptosis [206]. EZH2 overexpression is
associated with advanced stage in glioma and reduces overall survival of
glioma patients. Therefore, it can be considered as an independent
prognostic factor [207]. The overexpression of EZH2 occurs in 39.4% of
glioma cases and suppressing EZH2 signaling diminishes capacity of
glioma cells in colony formation and proliferation. The investigation of
molecular pathways revealed that EZH2 down-regulation significantly
reduces expression level of Akt and c-Myc as downstream targets to
impair glioma progression [208]. It seems that EZH2 induces PIK3-
K/Akt/mTOR axis to mediate resistance of glioma cells to apoptosis. As
potent anti-tumor agent, PCI-24781 administration (0, 0.25, 0.5, 1, 2.5
and 5 pM) diminishes glioma proliferation and induces apoptosis via
down-regulating EZH2 and subsequent suppression of PIK3K/Akt/m-
TOR axis [209].

The experiments obviously demonstrated that EZH2 is an indepen-
dent prognostic factor in glioma and its inhibition by anti-tumor agents
can suppress proliferation and invasion. Now, this question comes into
mind that is there any possibility for EZH2 targeting using gene therapy?
The answer is positive, but just one experiment has evaluated this pos-
sibility, showing that we still have a long way in targeting EZH2 by

genetic tools in glioma therapy. Briefly, siRNA can be synthesized in
laboratory and without undergoing DICER processing, it can be incor-
porated in RNA-induced silencing complex (RISC) to obtain its proper
function. Then, it mediates mRNA cleavage and degradation to reduce
expression of target gene. siRNAs have been extensively applied in
cancer therapy in recent years and for promoting its potential in gene
silencing, various nanoparticles have been developed for its targeted
delivery to tumor site [22,210-213]. A recent experiment has developed
self-assembled DMC nanoparticles for delivery of EZH2-siRNA. The
nanostructures had particle size and zeta potential of 36.7 mV and
35.6 nm, respectively with high encapsulation efficiency (98%). The
siRNA-loaded nanostructures effectively reduced expression level of
siRNA to induce apoptosis and impair growth of glioma cells. The in vivo
experiment also demonstrated potential of siRNA-loaded nanoparticles
in retarding glioma growth and inducing apoptosis [214]. Hence, EZH2
is an oncogenic factor in glioma and its related molecular pathways
should be highlighted in next experiments to provide new insight for
developing novel therapeutics (Table 3) [215-217]. Fig. 3 provides a
summary of EZH2 signaling in glioma.

6. EZH2 in astrocytoma

Astrocytoma is another brain tumor that its management and treat-
ment should be considered to save lives of many people around the
world. Astrocytoma is divided into two major kinds including low-grade
astrocytoma and anaplastic astrocytoma. The low-grade astrocytoma
demonstrates PDGF/PDGFR upregulation and up to 69% of astrocytoma
cases show TP53 gene mutation. These genetic alterations are also
observed in anaplastic astrocytoma, but TP53 gene mutation occurs in
53% of cases. One of the interesting points is that astrocytoma can
develop into secondary GBM. Both low-grade and anaplastic astrocy-
toma can drive to secondary GBM and it has unique molecular features
including EGFR amplification (8%), TP53 mutation (65%), PTEN mu-
tation (4%), P16 deletion (19%) and PDGF/PDGFR upregulation [232].
Studies have focused on identification of molecular pathways involved
in astrocytoma progression and finding related therapeutics. The in-
duction of Hedgehog signaling is responsible for astrocytoma progres-
sion. As an upstream mediator, nucleolar and spindle associated protein
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Table 3
EZH2 and related molecular pathways in glioma.

Signaling network Remarks Refs

miRNA-137/EZH2 Down-regulation of miRNA-137 in glioma cells [218]
and tissues
Enhancing miRNA-137 expression impairs
growth and metastasis of cancer cellsmiRNA-
137 down-regulates EZH2 expression in
glioma suppression
Promoting self-renewal capacity of glioma [219]
stem cellsEZH2 phosphorylation leads to NF-
kB methylation to increase growth and
stemness of glioma cellsPhosphorylation of
EZH2 occurs by MELK
EZH2 EZH2 suppression by RNA interference leads [220]
to cell cycle arrest at GO/G1 phaseDown-
regulation of Bcl-2 and upregulation of Bax
EZH2 EZH2 upregulation predicts undesirable [221]
prognosis in glioma patients
Upregulation of LINC00963 by EZH2Acting as  [222]
tumor-promoting factor and increasing glioma
growth and progressionDown-regulation of

MELK/EZH2/NF-xB

EZH2/LINC00963/p21

p21
TTBK2/miRNA-520b/ Enhancing progression of glioma cellsDown- [223]
EZH2 regulation of miRNA-520b by circRNA
TTBK2Elevating EZH2 expression
EZH2/miRNA-1224-3p/ Down-regulation of miRNA-1224-3p, — 328 [224]

— 328/- 214/
B-catenin
p-catenin/USP1/EZH2

and — 214 by EZH2Increasing glioma

progression via inducing p-catenin signaling

Increasing glioma carcinogenesisp-catenin [225]

mediates transcription of USP1Increasing

EZH2 stability

SNHG7/miRNA-138-5p/ Tumor-promoting role of SNHG7 in [226]
EZH2 gliomaReducing miRNA-138-5p expression via

spongingIncreasing EZH2 stability

Overexpression of IncRNA NNT-AS1 in glioma  [227]

to promote cancer progressionMiRNA-582-5p

down-regulation by NNT-AS1Inducing EZH2

signaling

EZH2/MELK axis leads to glioma progression, [228]

cancer stem cell features and resistance to

radiotherapy

EZH2 Overexpression of EZH2 reduces overall [229]

survival of glioma patients

Suppressing cancer stem cell like features in [230]

gliomaDown-regulation of TUG1 in

gliomaReducing EZH2 expression

Down-regulation of HOXB13 by HOXB13-AS1 [231]

via binding to EZH2 and mediating

methylationIncreasing progression of glioma

cells

NNT-AS1/miRNA-582-
5p/EZH2

EZH2/MELK/FOXM1

TUG1/EZH2

HOXB13-AS1//EZH2/
HOXB13

1 (NUSAP1) stimulates Hedgehog signaling to enhance invasion and
migration of astrocytoma cells [233]. BRAF-FGFR genes and MAP-
K/ERK/mTOR signaling demonstrate high mutation in adult pilocytic
astrocytoma and demonstrate tumor-promoting role [234]. The
expression level of caspase-9 undergoes down-regulation by caveolin-1
to increase viability and progression of astrocytoma cells [235]. Eya2
is able to increase expression level of matrix metalloproteinases 9
(MMP9), resulting in enhanced astrocytoma cell metastasis [236].
EZH2 is involved in progression of astrocytoma, and various up-
stream mediators are able to regulate its expression. miRNA-144 is
suggested to function as tumor-suppressor in astrocytoma and impairs
growth and invasion. miRNA-144 can be considered as a prognostic
factor in astrocytoma where its low expression is correlated with un-
desirable prognosis. Mechanistically, miRNA-144 reduces expression
level of EZH2 to suppress astrocytoma progression. Reducing miRNA-
144 expression and increasing EZH2 expression promote both prolifer-
ation and metastasis of astrocytoma cells. The combined expression of
EZH2 and miRNA-144 (miRNA-144/EZH2) can be considered as reliable
prognostic tools in astrocytoma [237]. The interesting point about EZH2
signaling in astrocytoma is the clinical application of its expression. The
expression profile of EZH2 undergoes upregulation in astrocytoma and
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is associated with high grade [238]. There is a positive association be-
tween EZH2 transcript level and astrocytoma grade. Noteworthy, EZH2
has higher expression in GBM compared to astrocytoma. Furthermore,
enhanced expression level of EZH2 in GBM results from
post-transcriptional modification, probably mediated by miRNAs.
miRNA-26a-5p, miRNA-27a-3p and miRNA-498 are able to regulate
EZH2 expression. miRNA-26a-5p expression decreases with tumor
grade. Furthermore, EZH2 can form feedback loop with miRNA-26 and
regulating its expression by affecting promoter [239]. Another experi-
ment has examined forty patients including 22 males and 18 females.
EZH2 overexpression reduces overall survival of patients and its upre-
gulation is observed in stages I to IV [240]. An experiment demonstrates
EZH2 function in impairing differentiation of neurons. The
down-regulation of EZH2 is vital for differentiation into astrocytes and
its expression disrupts differentiation of astrocytes to neural stem cells
[241]. Although a few studies have examined EZH2 role in astrocytoma,
they are in line with oncogenic role of EZH2 in astrocytoma and its as-
sociation with advanced stages. Besides, EZH2 prevents normal func-
tions in neurons and paves the way for astrocytoma development. Future
experiments can focus on revealing related molecular pathways to EZH2
in astrocytoma and providing insight towards its targeting in astrocy-
toma therapy.

7. EZH2 in medulloblastoma

The localization of medulloblastoma is suggested to be in cerebellum
and it is considered as a solid tumor [242,243]. Medulloblastoma has a
heterogenous nature and is commonly diagnosed in young children with
ages below 10. Both classical and non-classical therapeutic strategies are
performed for medulloblastoma patients [244-246]. Overall, medullo-
blastoma is divided into four subcategories including Wnt type, Sonic
Hedgehog type, group 3 and group 4 [247]. Medulloblastoma patients
demonstrate abnormalities including high intracranial pressure and
cerebellar dysfunction [248]. These alterations result in emergence of a
number of symptoms in clinical course such as nausea, headache,
vomiting, dizziness and difficult walking. Surgery, chemotherapy and
radiotherapy are applied for the treatment of medulloblastoma patients
[249]. Recent experiments have revealed crucial role of epigenetic and
genetic changes in medulloblastoma progression and development
[250-254]. It is suggested that Wnt signaling activation can be consid-
ered as a promising strategy in medulloblastoma treatment. In xeno-
grafts with medulloblastoma, application of Wnt agonist demonstrates
therapeutic prospects and impairs tumor progression [255]. Besides,
medulloblastoma cells stimulate Sonic Hedgehog signaling to increase
their capacity in tumor spheroid formation [256]. The following state-
ments focus on the role of EZH2 signaling in medulloblastoma
progression/inhibition.

Compared to astrocytoma, more experiments have evaluated the role
of EZH2 signaling in medulloblastoma progression, therapy response
and cancer stem cells (CSC) features. At the first step, EZH2 signaling
regulates CSC features of medulloblastoma. EZH2 interacts with
maternal embryonic leucine-zipper kinase (MELK) to affect progression
of medulloblastoma. Both MELK and EZH2 expressions undergo upre-
gulation in medulloblastoma and are responsible for reduced survival.
MELK phosphorylates EZH2 and in turn, EZH2 stimulates MELK
methylation in medulloblastoma to increase growth rate of medullo-
blastoma cells. The in vivo experiment on xenografts demonstrates that
differentiation increases, while tumor growth decreases upon inhibition
of EZH2 or MELK. Therefore, MELK and EZH2 interaction is vital for self-
renewal capacity and CSC features of medulloblastoma [257]. EZH2
inhibition results in decreased proliferation rate and self-renewal ca-
pacity of medulloblastoma and diminishes H3K27me3 level. Notably,
EZH2 is a druggable target and its expression level can be affected by
pharmacological compounds. An experiment has synthesized small
molecule inhibitor of EZH2 with similarity to EPZ005687, GSK2816126
and MC3629 agents. EZH2 inhibition by this small molecule suppresses
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self-renewal ability and growth of medulloblastoma cells and triggers
apoptosis. In vivo experiment on xenograft retards tumor growth, in-
duces apoptosis and decreases stemness upon EZH2 inhibition in me-
dulloblastoma [258]. Therefore, EZH2 signaling is vital for stemness and
CSC features in medulloblastoma and future experiments should focus
on this aspect of EZH2 in cancer treatment.

The interesting point about EZH2 is its double-edged sword role in
medulloblastoma. Two different experiments have evaluated EZH2
targeting in medulloblastoma and they demonstrate both tumor-
suppressor and tumor-promoting functions of this signaling pathway.
EPZ-6438 (Tazemetostat) is small molecule inhibitor of EZH2 that has
opened its way in clinical course for treatment of cancer patients. EPZ-
6438 administration can inhibit medulloblastoma growth in vitro and
in vivo. In medulloblastoma, ADGRB1 expression is silenced. It has
binding site for H3K27me3 on its promoter that mediates its down-
regulation. Upon EZH2 inhibition, ADGRB1 obtains an active chro-
matin status and enhances expression level of its downstream target
BAIl. Then, Mdm?2 activity is blocked and an increase occurs in stability
and expression level of p53 [259]. However, another experiment dem-
onstrates down-regulation of EZH2 as an opportunity for medulloblas-
toma progression. Gfil is a tumor-promoting factor in medulloblastoma
that cooperates with Myc in cancer progression. EZH2 inhibition me-
diates Gfil upregulation in increasing medulloblastoma progression
[260].

Similar to other brain tumors, miRNAs are able to regulate EZH2
signaling in medulloblastoma. Exosomes are a member of extracellular
vesicles (EVs) that can provide communication between cells and
transport a variety of molecules such as proteins, lipids and nucleic acids
[102,261,262]. The exosomal miRNAs play a significant role in pro-
gression of medulloblastoma. miRNA-135b and miRNA-135a are
transported by EVs in medulloblastoma and their suppression reduces
cancer progression [263]. The exosomal miRNA-130b-3p down--
regulates serine/threonine-protein kinase 1 (SIK1) expression to induce
p53 signaling, resulting in reduced medulloblastoma progression [264].
The exosomal miRNA-101-3p functions as tumor-suppressor in medul-
loblastoma and prevents growth, colony-formation capacity and
metastasis of cancer cells. Investigation of molecular pathways reveals
that miRNA-101-3p is able to bind to 3/-UTR of EZH2 in reducing its
expression and impairing medulloblastoma progression [265].

Clinically, EZH2 affects overall survival of medulloblastoma pa-
tients. EZH2 and DAB2IP expression levels undergo upregulation and
down-regulation in medulloblastoma, respectively. EZH2 induces tri-
methylation of DAB2IP to decrease its expression. The low expression of

miRNA- 133b
PCI 24781 mlRNA 524- Sp
(MELK), mlRNA 1377
IncRNA PVT1 /

mlRNA 454-3p
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Fig. 3. EZH2 affects progression of glioma
cells. The IncRNA PVT1 and ANCR are capable
of inducing EZH2 signaling to increase growth
rate and stemness of glioma cells. The EZH2
signaling can induce LINC00963 expression to
prevent apoptosis in glioma cells. Moreover,
miRNA-32, — 324-5p, —133b, and - 137
regulate EZH2 expression. The IncRNA/
miRNA/EZH2 axis has been also evaluated in
glioma cells. These interactions that EZH2 is the
central player, affect progression of glioma
cells.
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DAB2IP is associated with undesirable prognosis. The low expression of
DAB2IP mediates irradiation resistance in medulloblastoma and pre-
vents apoptosis. Therefore, EZH2 overexpression negatively affects
DAB2IP expression in medulloblastoma progression [266]. However, we
are still at the beginning point and more experiments are required to
demonstrate the role of EZH2 in drug resistance feature of medullo-
blastoma and its impact on other molecular pathways in regulating
proliferation and invasion of cancer cells.

8. EZH2 in ependymomas

Ependymomas (EPNs) are malignant brain tumors that are observed
in both children and adults. EPNs comprise 8-10% of brain tumors in
children, while they have lower incidence rate in adults (4% of brain
tumors) [267]. Originally, EPNs are derived from ependymal cells of
cerebral ventricles and are considered as neuroepithelial tumors [268].
EPNs have three grades including subependymomas and myxopapillary
ependymomas (grade I), ependymomas (grade II) and anaplastic epen-
dymomas (grade III), based on WHO classification [267]. Besides,
intracranial EPNs are more common compared to spinal EPNs. Accord-
ing to grade, a distinct strategy is applied for treatment of EPNs. For
grade I tumors, surgery is effective and completely eradicates tumor
[269,270]. For grade I and II tumors, surgery along with radiation is
recommended [271]. When grade II tumors are eliminated with surgery,
radiation is not recommended. Furthermore, radiation should be pro-
hibited for patients with ages less than 3 [272,273]. When the tumor
spreads via cerebrospinal fluid, radiotherapy is a great option for tumor
eradication [272].

To date, one experiment has focused on EZH2 signaling in EPNs and
more studies are required to clarify EZH2 role in this cancer. EZH2
overexpression occurs in 16% of EPN cases and is correlated with poor
prognosis and low 5-year overall survival. EZH2 expression can be
considered as an independent biomarker that enhances EPN progression
and has high specificity [274].

9. EZH2 in rhabdoid tumors

Rhabdoid tumor is a rare complication in brain. Rhabdoid tumors
occur in various organs of body including brain, kidney and soft tissues,
but they have high prevalence in brain [275]. Children can develop
rhabdoid tumors firstly in CNS and can be followed by development in
others organs such as lung and liver [275]. Therefore, brain is consid-
ered as the primary and first organ affected by rhabdoid tumors in
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Fig. 4. EZH2 signaling in other brain tumors including astrocytoma and medulloblastoma. The focus in astrocytoma is on miRNAs regulating EZH2 and their in-
teractions for regulating brain tumor progression. The EZH2 signaling induces DAB2IP expression for inhibiting radio-resistance and inducing apoptosis.

children and factors involved in its development and progression should
be characterized.

Similar to EPNs, one study has examined EZH2 expression in rhab-
doid tumors of CNS. Fourteen clinical cases of rhabdoid tumors of CNS
were collected and they were investigated based on EZH2 on expression.
Noteworthy, EZH2 upregulation was observed in all cases, showing that
it can be considered as a biomarker and future experiments can focus on
developing therapeutics for targeting this molecular signaling (Fig. 3)
[276] (Fig. 4).

10. Conclusion and remarks

The present review focused on revealing the role of EZH2 in various
brain tumors and its interaction with other signaling networks in regu-
lating cancer malignancy. The EZH2 signaling induces EMT mechanism
in promoting invasion and metastasis of GBM cells. Therefore, small
molecule inhibitors of EZH2 can be utilized to reverse EMT and improve
prognosis of GBM patients. EZH2 overexpression can prevent apoptosis
in GBM cells that not only promotes their survival rate, but also mediates
drug resistance. The GBM cells show high proliferation rate due to cell
cycle progression and silencing EZH2 impairs GBM progression. Various
upstream and downstream mediators of EZH2 signaling have been
identified in GBM. miRNAs can regulate EZH2 expression in affecting
brain tumor progression and in turn, EZH2 has capacity of binding to
promoter of miRNAs in regulating their expression. LncRNAs are able to
epigenetically target expression of target genes via recruiting EZH2.
Similar to miRNAs, EZH2 signaling modulates IncRNA expression in
brain tumors. mTOR signaling is another upstream mediator of EZH2.
The identification of such signaling networks is of importance in GBM
therapy, since they can be targeted in next experiments by pharmaco-
logical compounds or genetic tools to suppress cancer progression.

The EZH2 signaling also plays an oncogenic role in glioma. The
overexpression of EZH2 prevents apoptosis in glioma cells and increases
both growth and migration of tumor cells. EZH2 can promote cancer
stem cell features in glioma cells and induces their resistance to
chemotherapy and radiotherapy. Therefore, suppressing EZH2 signaling
using pharmacological and genetic tools has been performed in glioma
therapy. Furthermore, miRNAs and IncRNAs are able to regulate EZH2
signaling in glioma.

Most of the studies have focused on EZH2 signaling in glioma and
GBM, and a few of them are about other kinds of brain tumors such as
EPNs, rhabdoid tumors, astrocytoma and medulloblastoma. However,
the interesting point is that clinical role of EZH2 signaling in these brain
tumors, as for EPNs and rhabdoid tumors, high expression level of EZH2
has been observed in tumor cases. The expression level of EZH2 can be
considered as a prognostic factor in brain tumors and then, small mo-
lecular inhibitors and gene therapy can be used for regulating EZH2

expression. The self-renewal capacity of medulloblastoma and astrocy-
toma mainly depends on EZH2 signaling. Hence, suppressing progres-
sion and CSC features of medulloblastoma and astrocytoma can be
achieved via EZH2 signaling inhibition. Although there is no study about
EZH2 and self-renewal capacity in EPNs and rhabdoid tumors, future
experiments can focus on this aspect and pertain it to CSC features. The
miRNA-EZH2-miRNA loop mainly affects astrocytoma and medullo-
blastoma progression and such axis has been also implicated in clinical
course. Apart from challenges in reaching to brain tumors due to pres-
ence of BBB, chemoresistance is a major problem in treatment of these
cancers [277]. The limitation of current works is lack of relating EZH2
signaling to drug resistance in EPNs, rhabdoid tumors, astrocytoma and
medulloblastoma that can be the focus on future experiments. Although
significant efforts have been made in investigating role of EZH2
signaling in brain tumors, the experiments have mainly focused on
revealing EZH2 interaction with other signaling networks. However,
there are different inhibitors of EZH2 signaling (discussed in Section 3)
that can be used for brain tumor treatment. Furthermore, clinical
application of EZH2 inhibitors may be limited due to their poor
bioavailability. The nucleic acid drugs for targeting EZH2 such as siRNA
also suffer from off-targeting and low accumulation at tumor site that
their clinical application depends on using nanostructures for their de-
livery [22,210-213].
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