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Abstract

The identification of agents that can reverse drug resistance in cancer chemotherapy, and

enhance the overall efficacy is of great interest. Paclitaxel (PTX) belongs to taxane family
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that exerts an antitumor effect by stabilizing microtubules and inhibiting cell cycle

progression. However, PTX resistance often develops in tumors due to the over-

expression of drug transporters and tumor‐promoting pathways. Noncoding RNAs

(ncRNAs) are modulators of many processes in cancer cells, such as apoptosis, migration,

differentiation, and angiogenesis. In the present study, we summarize the effects of

ncRNAs on PTX chemotherapy. MicroRNAs (miRNAs) can have opposite effects on PTX

resistance (stimulation or inhibition) via influencing YES1, SK2, MRP1, and STAT3.

Moreover, miRNAs modulate the growth and migration rates of tumor cells in regulating

PTX efficacy. PIWI‐interacting RNAs, small interfering RNAs, and short‐hairpin RNAs are

other members of ncRNAs regulating PTX sensitivity of cancer cells. Long noncoding

RNAs (LncRNAs) are similar to miRNAs and can modulate PTX resistance/sensitivity by

their influence on miRNAs and drug efflux transport. The cytotoxicity of PTX against

tumor cells can also be affected by circular RNAs (circRNAs) and limitation is that

oncogenic circRNAs have been emphasized and experiments should also focus on onco‐

suppressor circRNAs.
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1 | INTRODUCTION

Chemotherapy drugs are the most often employed type of cancer

treatments due to their ability to suppress cancer progression (Abadi,

Mirzaei, et al., 2021; Ashrafizadeh, Mirzaei, et al., 2021; Delfi,

Sartorius, et al., 2021), but drug resistance has led to chemotherapy

failure and cancer patient deaths (Ashrafizade, Delfi, et al., 2021; Kirtonia,

Ashrafizadeh, et al., 2021; Makvandi, Josic, et al., 2021; Mirzaei, Gholami,

et al., 2021; Mirzaei, Gholami, et al., 2021; Sharifi, Bigham, et al., 2021).

Paclitaxel (PTX) is a member of the taxane family that has demonstrated

high antitumor activity against different tumor types, such as breast,

lung, prostate, brain, and ovarian cancers (Ashrafizadeh, Ahmadi,

et al., 2020; Ashrafizadeh, Zarrabi, et al., 2020; Kirtonia, Ashrafizadeh,

et al., 2021). Similar to other taxanes, PTX prevents cancer cell

proliferation and progression via the cell cycle by stabilizing microtubules

and inhibiting tubulin depolymerization. In fact, the balance of

microtubules is disrupted by PTX (Bernabeu, Cagel, et al., 2017; Hwang,

Kim, et al., 2019; Lee, Kim, et al., 2018; Nyrop, Deal, et al., 2019;

Rajendran, Li, et al., 2011). Despite showing promising results in many

clinical studies (Vergote, Bergfeldt, et al., 2020), cancer cells can develop

resistance to PTX chemotherapy. Although many of the factors involved

in PTX resistance are understood, there are additional causes that have

not been completely elucidated. Different strategies have been applied

to overcome PTX resistance, for instance by loading PTX onto

nanoparticles to promote its targeted delivery and accumulation in

tumors. Nanostructures can significantly enhance the efficacy of PTX

chemotherapy and are associated with apoptosis induction in cancer

cells (Diab, Alkafaas, et al., 2020; Fraguas‐Sánchez, Fernández‐Carballido,

et al., 2020; Tang, Chen, et al., 2020). Another strategy is to combine

PTX with drugs to suppress PTX resistance and overcome drug efflux

from cancer cells (Attia, El‐Kersh, et al., 2020; Khan, Quispe, et al., 2020;

Saghatelyan, Tananyan, et al., 2020; Zhang, Huang, et al., 2020). A third

strategy is signaling network recognition participating in PTX resistance,

which may be overcome by pharmacological and genetic interventions

(Vergote, Bergfeldt, et al., 2020; Wang, Min, et al., 2020). ncRNAs,

including miRNAs, lncRNAs, and circRNAs, are all potential regulators of

the cancer cell response to chemotherapy (Ashrafizaveh, Ashrafizadeh,

et al., 2021; Delfi, Sartorius, et al., 2021; Guan, Zhang, et al., 2020;

Kirtonia, Ashrafizadeh, et al., 2021; Mirzaei et al., 2021; Paskeh, Mirzaei,

et al., 2021; Shen, Lei, et al., 2020; Wang, Ji, et al., 2020; Zhang, Huang,

et al., 2020; Zhou, Jiang, et al., 2020; Zhou, Wei, et al., 2020). Although

there are some ncRNAs that can mediate chemoresistance, others have

the opposite effect and can suppress chemoresistance by sensitizing

cancer cells to chemotherapy‐mediated apoptosis and cell cycle arrest

(Chen, Zhu, et al., 2020; Zheng, Li, et al., 2020; Zou, Yang, et al., 2020).

The current study focuses on the role of ncRNAs and exosomal ncRNAs

in regulating PTX response of tumor cells.

2 | NONCODING RNAs

2.1 | Short noncoding RNAs

2.1.1 | MicroRNAs

miRNAs were first discovered in 1993, when Ambros et al. found that

lin‐4 gene, known as lin‐4 miRNA can diminish lin‐4 protein levels via

antisense complementary binding of RNA transcripts (Bautista‐

Sánchez, Arriaga‐Canon, et al., 2020; Lee, Feinbaum, et al., 1993).

This research was related to Caemorhabditis elegans and further
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experiment detected other miRNA genes in various species, including

human. Consequently, miRNAs were established as small regulatory

RNAs with length of 19–24 nucleotides with presence in both

intergenic and intragenic sections of genome (Ambros, Bartel,

et al., 2003; Mirzaei, Saebfar, et al., 2021; Mirzaei, Zarrabi,

et al., 2021). These endogenous noncoding RNAs are capable of

gene downregulation (Indrieri, Carrella, et al., 2020). The inhibitory

impact of miRNAs on gene expression is mediated by imperfect

binding to sequences located at 3′‐untranslated region (3′‐UTR;

Bartel, 2004). It is worth mentioning that miRNAs can also promote

gene expression level (Ashrafizadeh et al., 2020; O'Brien, Hayder,

et al., 2018). The identification of target sequence that miRNAs

bind to is directed by “seed region” containing 7–8 nucleotides that

have been located at positions 2–7 from miRNA 5′region (Filipowicz,

Jaskiewicz, et al., 2005; Jing, Huang, et al., 2005). Based on the

recognition of binding site, the binding of miRNA‐induced silencing

complex to cognate target results in various outcomes (Pillai,

Bhattacharyya, et al., 2007). The suppression of translation occurs

when binding is partial complementary, while degradation of target

transcript occurs in fully complementary binding (Bartel, 2004;

Filipowicz, Jaskiewicz, et al., 2005; Krol, Loedige, et al., 2010). It is

also worth mentioning that small RNAs have the capacity of

modifying chromatin and they can affect gene expression by

targeting RNA interference pathways (Holoch & Moazed, 2015).

The fact that a variety of genes and pathways are regulated by

miRNAs and more importantly, deregulation of miRNAs occurs in

diseases, particularly cancer, has made them appropriate options to

consider in disease and cancer therapy (Ashrafizadeh, Zarrabi,

et al., 2020; Ashrafizadeh, Zarrabi, et al., 2020; Ashrafizadeh, Zarrabi,

et al., 2020; Vinchure & Kulshreshtha, 2020). Overall, it appears that

miRNAs that undergo upregulation in disease, lead to disease

progression, while downregulated miRNAs exert a protective role.

The miRNA inhibition and replacement therapeutic strategies have

been developed for targeting these short noncoding RNAs and

minimizing cancer progression (Peng, Theng, et al., 2021). It has been

reported that proliferation, metastasis, and drug resistance feature of

tumor cells are affected bymiRNAs (Ashrafizadeh, Zarrabi, et al., 2020;

Gao, Shen, et al., 2020; Niu, Yang, et al., 2021; Tormo, Ballester,

et al., 2019). The upregulation of tumor‐promoting miRNAs such as

miRNA‐4262 in cancers can mediate PTX resistance via PTEN

downregulation and subsequent PI3K/Akt signaling activation (Sun,

Zhou, et al., 2019). Furthermore, miRNAs are valuable sources for

tumor diagnosis and prognosis in pre‐clinical and clinical studies

(Bayarmaa, Wu, et al., 2019; Leidinger, Hart, et al., 2016; Maki,

Sasaki, et al., 2014; Tan, Tan, et al., 2020). Consequently, improving

our knowledge toward miRNAs and their expression profile in cancer

can be beneficial in cancer therapy.

2.1.2 | PIWI‐interacting RNAs

PIWI‐interacting RNAs (piRNAs) are another member of RNA

molecules with 26–31 nucleotides in length capable of binding to

PIWI proteins (Dana, Mansournia, et al., 2020). In order to exert

regulatory role, PIWI proteins and polycomb group proteins (PcGs)

bind to PcG response elements in genome and these are tightly

regulated by piRNAs (Lin, 2007). Overall, there are three distinct

kinds of piRNAs including lncRNA‐derived piRNAs, mRNA‐derived

piRNAs, and transposon‐derived piRNAs. It has been reported that

there are two subclusters for piRNAs including piRNAs acting on

premeiotic germ cells (pre‐pachytene piRNAs) and those working in

meiosis and haploid spermatid phase (pachytene piRNAs). The

molecular characteristics of these piRNAs are similar, and difference

is that pre‐pachytene piRNAs cluster contains repetitive sequence

elements (Wei, Huang, et al., 2017). The piRNAs as small noncoding

RNAs are associated with certain ARGONAUTE proteins of PIWI

clade including MIWI, MILI, and MIWI2 in mouse, PRG‐1 in

Caenorhabditis elegans, and Argonaute 3 and Aubergine in Drosophila

(Ramat & Simonelig, 2020). Two interconnected mechanisms includ-

ing phasing and ping‐pong amplification are involved in the

production of piRNAs. Notably, these two mechanisms are physically

separated in cells, so that phasing occurs in outer membrane of

mitochondria, while ping‐pong amplification occurs in Nuage

comprising membraneless ribonucleoprotein granules localized at

the periphery of germ cell nuclei (Ding, Liu, et al., 2019; Ge, Wang,

et al., 2019; Huang, Gao, et al., 2011; Huang, Li, et al., 2014;

Watanabe, Chuma, et al., 2011).

piRNAs are key players in physiological and pathological events

due to their ability in regulating gene expression at transcriptional

and post‐transcriptional levels (Liu, Dou, et al., 2019). The dysregula-

tion of piRNAs is an obvious finding in different cancers. For instance,

in breast cancer, piRNA‐36712 demonstrates decrease in expression

and its overexpression impairs proliferation and invasion of tumors

via combination with SEPW1P RNA (Tan, Mai, et al., 2019). A similar

phenomenon occurs in gastric cancer; so piRNA‐651 demonstrates

an increase in expression to suppress apoptosis and promote cancer

proliferation. Furthermore, this piRNA enhances cell cycle progres-

sion via inducing cyclin D1 and CDK4 expressions (Li, Luo, et al., 2016;

Yao, Wang, et al., 2016). Noteworthy, piRNAs are potential

regulators of the therapy response of tumors. piRNA‐39980 reduces

the sensitivity of neuroblastoma cells to doxorubicin chemotherapy

via apoptosis inhibition (Roy, Das, et al., 2020).

2.1.3 | Small interfering RNAs

After the discovery of RNA interference (RNAi) in 1990s, this

therapeutic tool obtained much attention in pre‐clinical and clinical

settings (Ashrafizadeh, Hushmandi, et al., 2020; Ashrafizadeh,

Zarrabi, et al., 2020; FiBahreyni & Luo, 2020; Fire et al., 1998; Lee,

Kim, et al., 2016; Mirzaei, Gholami, et al., 2021; Mirzaei, Gholami,

et al., 2021; Mirzaei, Mahabady, et al., 2021). Small interfering RNA

(siRNA) is double‐stranded RNA with 21‐25 nucleotides capable of

silencing target genes (Kleinman, Kaneko, et al., 2012; Zamore,

Tuschl, et al., 2000). The siRNA comprises two strands including

sense (passenger) and antisense (guide) strands. These two strands
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are attached to each other via a protein complex known as

RNA‐Induced Silencing Complex (RISC; Fakhr, Zare, et al., 2016;

Parvani & Jackson, 2017). The task of guide strand is the

identification of complementary mRNA and after its connection,

RISC complex formed. Then, catalytic subunit of RISC, called

argonaute 2 (Ago2) provides cleavage of target mRNA (Martinez,

Patkaniowska, et al., 2002; Meister & Tuschl, 2004). As siRNAs can

downregulate expressions of target genes, they are artificially

synthesized in laboratory for targeting specific pathways involved

in disease progression, particularly cancer. In field of cancer therapy,

siRNAs significantly diminish the growth and invasion of tumors as

well as enhance their sensitivity to therapy. However, off‐targeting

features and degradation by enzymes have limited siRNA potential in

cancer therapy, leading to the development of delivery systems for

enhancing its efficacy in gene silencing and cancer suppression

(Ashrafizadeh, Delfi, et al., 2021; Ngamcherdtrakul & Yantasee, 2019,

Subhan & Torchilin 2019; van den Brand, Mertens, et al., 2018;

Yonezawa, Koide, et al., 2020). The use of siRNA in chemosensitivity

demonstrates an increase, so that by disrupting cancer progression,

inducing apoptosis, and reducing expression level of factors involved

in cancer cell growth and invasion, siRNA can enhance the

chemosensitivity of cancer cells (Butt, Amin, et al., 2016; Li, Tao,

et al., 2017; Pan et al., 2020; Tian, Pan, et al., 2019; Wang, Song,

et al., 2021; Wang, Xu, et al., 2018; Zhao, Xu, et al., 2017).

2.1.4 | Short‐hairpin RNA

In the previous section, it was mentioned that siRNA has its own

advantages and disadvantages. Some of these cons include off‐

targeting and enzyme degradation. In order to overcome these

challenges, vectors generating short‐hairpin RNA (shRNA) have been

developed that can be processed into short duplex RNAs in cells,

functioning similar to siRNA (Bernards, Brummelkamp, et al., 2006).

This kind of gene silencing requires stabilization and incorporation of

vector into host genome. Furthermore, it has been reported that

hairpin cassette can be loaded into adenoviral, retroviral, and

lentiviral vectors for targeted delivery of shRNA into various cell

kinds (Brummelkamp, Bernards, et al., 2002; Dirac & Bernards, 2003;

Khvorova, Reynolds, et al., 2003; Michiels, van Es, et al., 2002;

Stegmeier, Hu, et al., 2005). After infecting and replicating in cells,

nuclear shRNAs undergo expression to produce hairpin RNAs, and

then, they translocate to cytoplasm. In the next step, Dicer enzyme

involves in cleavage of shRNA and consequent production of siRNA.

Upon incorporation of siRNA into RISC complex, the target

homologous mRNA is affected and the perfect binding sequence

leads to cleavage and downregulating target gene (Zhang, Ding,

et al., 2016). Hence, it appears that shRNA works similarly to siRNA

in gene silencing. To date, a variety of studies have applied shRNA in

gene silencing and suppressing cancer progression. LncRNA HULC

silencing by shRNA provides miRNA‐377‐5p upregulation, resulting

in hepatocellular carcinoma suppression (Yan, Wei, et al., 2020). More

importantly, shRNA is also beneficial in increasing chemosensitivity

for cancer suppression (Archid, Zieker, et al., 2020; Cheng, Ke,

et al., 2016; Li, Zhang, et al., 2017).

2.2 | Long‐chain noncoding RNAs

2.2.1 | Long noncoding RNAs

LncRNAs are another kind of ncRNAs with a length of more than 200

nucleotides that play a significant role in human disease regulation

(Cantile, Di Bonito, et al., 2021; Feng, Wu, et al., 2020; Mirzaei,

Paskeh, et al., 2021; Paskeh et al., 2021). LncRNAs undergo

transcription by RNA polymerase II due to lack of open reading

frame. There are five types of lncRNAs including sense, antisense,

bidirectional, intron, and intergenic regions (Laurent, Wahlestedt,

et al., 2015; Zhang & Zhu, 2014). Noteworthy, lncRNAs have the

capacity of downregulating the expression of miRNAs via sponging

(Tsang, Au, et al., 2015; Zhang, Cao, et al., 2016). Besides, lncRNAs

contribute to other main biological processes in cells including cell

cycle regulation, transcription inhibition/induction, histone modifica-

tion, chromatin remodeling, and gene imprinting (Akhade, Dighe,

et al., 2016; Hadji, Boulanger, et al., 2016; Wu, Su, et al., 2016; Zhou,

Zhang, et al., 2017). LncRNAs can function as decoys for sequester-

ing transcription factors (Hung, Wang, et al., 2011). Although

different lncRNAs possess various functions, it appears that most

of the nuclear lncRNAs suppress transcription via directing chromatin

modifiers to certain genomic loci and subsequent recruitment of

DNA methyltransferases and histone modifiers (Davidovich &

Cech, 2015; Tu, Yuan, et al., 2017). LncRNAs can modulate a wide

variety of molecular mechanisms such as apoptosis, autophagy,

proliferation, and migration (Kopp & Mendell, 2018; Nair, Chung,

et al., 2020; Ransohoff, Wei, et al., 2018; Wong, Huang, et al., 2018).

LncRNAs are key players in carcinogenesis, since they can modulate

proliferation and metastasis of tumors. Furthermore, lncRNAs affect

chemosensitivity of tumors (Jin, Ge, et al., 2020; Liang, Song,

et al., 2020; Zhang, Wang, et al., 2020).

2.2.2 | Circular RNAs

In contrast to lncRNAs, circRNAs have a covalently closed loop

structure lacking 5′caps and 3′poly‐A tails and have obtained

attention among other kinds of ncRNAs (Li, Jiang, et al., 2020; Zhang,

Hu, et al., 2020). These new emerging ncRNAs were first discovered

in viruses in 1970s (Sanger, Klotz, et al., 1976) and they are

predominant transcripts of various human cell types (Salzman,

Gawad, et al., 2012). To date, more than 25,000 circRNAs have

been identified in human cells, and these stable and conserved

products of RNA splicing are correlated with complementary ALU

repeats in bordering introns (Jeck, Sorrentino, et al., 2013). The

expression of circRNAs occurs in different eukaryotic cells, and it

appears that their expression is cell‐specific and also, developmental

stage‐specific (Jeck et al., 2013; Memczak, Jens, et al., 2013; Salzman,
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Chen, et al., 2013; Salzman, Gawad, et al., 2012). The biogenesis

process of circRNAs has not been fully understood, and different

models have been proposed for their synthesis in cells. Specifically,

four distinct models are considered as exon skipping, intron‐pairing‐

driven circularization, ring‐like intron formation pattern, and

RNA‐binding protein (RBP) formation (Liu, Guo, et al., 2020). On

the other hand, there are three kinds of circRNAs such as ecircRNA,

intron circRNA, and EIciRNA. A wide variety of circRNAs have been

recognized to participate in cancer progression/inhibition. Prolifera-

tion, apoptosis, autophagy, metastasis, and drug resistance are

influenced by circRNAs (Dou, Ren, et al., 2020; Han, Zhang,

et al., 2020; Song, Hu, et al., 2020; Xie, Liang, et al., 2020). The

present review focuses on revealing the role of circRNAs in PTX

chemotherapy.

3 | MICRORNAs AND PACLITAXEL
CHEMOTHERAPY

3.1 | Indirect effects

3.1.1 | miRNAs and cancer proliferation

The miRNAs with tumor‐suppressor activity show a downregulation

in expression in tumors (Ashrafizadeh, Ang, et al., 2020; Ashrafizadeh,

Najafi, et al., 2020; Sailo, Banik, et al., 2019). Identification of these

miRNAs and their upregulation can be advantageous in fight against

tumors (Ashrafizadeh, Hushmandi, et al., 2020; Ashrafizadeh, Zarrabi,

et al., 2020). miRNA‐335 shows decreased expression level in triple‐

negative breast cancer cells and tissues, and increasing its expression

is associated with the inhibition of proliferation, induction of

apoptosis, and increased sensitivity to PTX chemotherapy (Hao, Lai,

et al., 2019). miRNAs can synergistically cooperate together in cancer

chemotherapy. In epithelial ovarian cancer cells, miRNA‐874‐3p and

miRNA‐874‐5p jointly downregulated the expression of serine/

threonine‐protein kinase 2 (SIK2) to suppress cancer proliferation,

leading to increased PTX sensitivity (Xia, Lin, et al., 2018). One of the

most common functions of tumor‐suppressing miRNAs is the

regulation of apoptosis. miRNA‐448 reduced the expression of Bcl‐

2 by binding to its 3′‐UTR to trigger apoptosis and sensitize bladder

cancer cells to PTX chemotherapy (Wang, Li, et al., 2018). A similar

phenomenon occurs in non‐small cell lung cancer cells, where

miRNA‐30a‐5p reduced Bcl‐2 expression and sensitized the cells to

PTX‐mediated apoptosis (Xu, Jin, et al., 2017). Therefore, miRNAs

that suppress the proliferation and migration of cancer cells, can

increase PTX sensitivity (Xiong, Yan, et al., 2018).

Increasing evidence suggests that tripartite motif‐containing 27

(TRIM27) can promote cancer progression by Wnt signaling induction

(Bhuvanalakshmi, Gamit, et al., 2018; Hwang et al., 2020; Liu, Tian,

et al., 2020). TRIM27 stimulated p21 ubiquitination to prevent cell

senescence and enhance breast cancer progression (Xing, Tang,

et al., 2020). In ovarian cancer cells, miRNA‐383‐5p impaired

proliferation via TRIM27 downregulation, resulting in increased PTX

sensitivity (Jiang, Xie, et al., 2019). miRNAs can be targeted by

antitumor compounds to enhance PTX sensitivity. Migration and

proliferation of tumors can be suppressed by the natural compound

morin (Nowak et al., 2020). Furthermore, this naturally occurring

flavanol compound increased chemosensitivity via inhibition of

autophagy (Pal Singh, Pal Khaket, et al., 2020). In prostate cancer

cells, morin reduced miRNA‐155 expression to induce the expression

of GATA binding protein 3 (GATA3), leading to PTX sensitivity (Li, Jin,

et al., 2017). The downregulation of tumor‐suppressor miRNAs paves

the way for increased expression of oncogenes and PTX resistance.

miRNA‐194‐5p shows a decrease in expression in PTX‐resistant

ovarian cancer cells. Enhancing miRNA‐194‐5p expression was

correlated with MDM2 inhibition, p21 upregulation, and stimulated

G1 phase arrest (Nakamura, Sawada, et al., 2019).

Inhibition of tumor cell proliferation is the most important

pathway, by which miRNAs can increase PTX sensitivity. miRNA‐34a

reduces cyclin D1 expression to enhance PTX sensitivity in breast

cancer cells (Irani, Paknejad, et al., 2020). E2F1 and cyclin D1 can be

simultaneously affected to increase tumor suppressor activity. E2F1

upregulation is in favor of enhancing tumor progression (Han, Zhao,

et al., 2020; Zhao, 2020). miRNA‐93 downregulated cyclin D1 and

E2F1 to inhibit the activation of downstream target Akt and increase

the PTX sensitivity in breast cancer cells (Bao, Chen, et al., 2020).

Downregulation of cyclin‐dependent kinase 6 (CDK6) and specificity

protein 1 (Sp1) by miRNA‐145 stimulated G1 phase arrest, leading to

increased PTX sensitivity in ovarian cancer cells (Zhu, Li, et al., 2014).

Furthermore, p53 inhibition by miRNA‐193a‐5p triggered apoptotic

cell death in breast tumor and increased cytotoxicity of PTX

(Khordadmehr, Shahbazi, et al., 2020). Upregulation of survivin (an

anti‐apoptotic protein) prevents apoptosis in cancer cells. miRNA‐

542‐3p overexpression reduced survivin to disrupt the HER3/PI3K/

Akt axis, leading to increased PTX sensitivity in breast cancer cells

(Lyu, Wang, et al., 2018).

On the other hand, some miRNAs act as tumor‐promoting

factors that can promote cell growth and metastasis, and increase the

PTX resistance of tumors. Although the exact role of miRNA‐205‐5p

in cancer is not completely understood, it was reported that

downregulation of miRNA‐205‐5p by lncRNA MEG32 led to cancer

progression (Tao, Yang, et al., 2020), while its overexpression

suppressed cancer proliferation and metastasis, and prevented drug

resistance (Wang, Song, et al., 2020; Zhu, Shan, et al., 2020). In

endometrial cancer cells, miRNA‐205‐5p increased PTX resistance by

increasing proliferation and inhibiting apoptosis. Mechanistically,

miRNA‐205‐5p diminished the expression of forkhead box protein

O1 (FOXO1) to increase PTX resistance. Restoring FOXO1 expres-

sion was correlated with increased PTX sensitivity, along with

impaired growth and more apoptosis (Lu, Xu, et al., 2019).

3.1.2 | miRNAs and cancer metastasis

IRAK1 is a serine/threonine kinase that participates in the immune

system by regulating toll‐like receptor signaling and interleukin‐1
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(Wee, Yatim, et al., 2015). IRAK1 can promote stemness and tumor

growth to increase PTX resistance (Cheng, Lau, et al., 2018).

Furthermore, downregulation of IRAK1 using ginsenoside (a plant

sterol from ginseng) leads to enhanced PTX sensitivity in cancer cells

(Wang, Song, et al., 2020). miRNA‐146a diminished the proliferation

and metastasis of breast tumors via IRAK1 inhibition, leading to

enhanced PTX sensitivity (Liu, Yang, et al., 2020).

The integrin beta‐1 (ITGB1) is a newly emerged oncogene in

cancer, whose inhibition resulted in the inhibition of metastasis

(epithelial‐to‐mesenchymal [EMT]) and angiogenesis (Tao, Yang,

et al., 2020). ITGB1 downregulation enhances the antitumor activity

of chemotherapeutic drugs in cancer therapy (Wang, Song,

et al., 2020). ITGB1 is a target of some miRNAs, and ITGB1

upregulation disrupts the antitumor activity of miRNAs (Zhao, 2020).

miRNA‐29c reduced ITGB1 expression to disrupt the progression of

nasopharyngeal cancer, and increased PTX sensitivity. Silencing

miRNA‐29c induced resistance to PTX chemotherapy (Huang, Hu,

et al., 2019).

One possible route to transport miRNAs into cells is using

exosomes. Exosomes are extracellular lipid bilayer microvesicles with

40–100 nm in size, and can contain RNA, DNA, and protein

molecules derived from their cells of origin as cargoes (Colombo,

Raposo, et al., 2014). Exosomes can participate in cancer progression

and chemoresistance (Meehan & Vella, 2016; Sousa, Lima, et al., 2015;

Syn, Wang, et al., 2016; Wee, Syn, et al., 2019). On the other hand,

EMT transition is also a mediator of drug resistance (Lin, Ren,

et al., 2020). Exposing gastric cancer cells to PTX was combined with

the exosomal delivery of miRNA‐155‐5p to the cells. Then, EMT was

activated and molecular pathways participating in the malignant

phenotype of gastric tumor including GATA3 and TP53INP1 under-

went upregulation, resulting in increased PTX resistance (Wee, Syn,

et al., 2019). miRNAs participate in PTX resistance by enhancing the

growth and metastasis of tumors (Huh, Kim, et al., 2013). EMT

induces metastasis of tumor cells and can involve in drug resistance

(Dai, Ahn, et al., 2016; Lee, Chinnathambi, et al., 2019; Tan, Sun,

et al., 2020; Yang, Lee, et al., 2019). miRNA‐181a stimulates EMT in

mediating PTX resistance in ovarian tumors (Li, Xu, et al., 2016).

3.2 | Direct effects

3.2.1 | miRNAs and drug transporters

miRNA‐199a is considered a promising target in PTX chemo-

therapy. Linc00518 downregulated miRNA‐199a expression and

enhanced multidrug resistance‐associated protein 1 (MRP1) to

increase PTX resistance (Chang, Hu, et al., 2018). In prostate

cancer cells, miRNA‐199a increased PTX sensitivity by reducing

Yamaguchi sarcoma viral homolog 1 (YES1; Chen, Cao, et al., 2018).

It was previously found that upregulation of both Bcl‐2 and MRP1

increased PTX resistance. miRNA‐7 impaired breast tumor pro-

gression and increased PTX sensitivity by suppressing Bcl‐2 and

MRP1 (Hong, Ding, et al., 2019).

3.2.2 | miRNAs and STAT3 signaling

The downstream targets of miRNAs are also important in PTX

sensitivity. STAT3 is a tumor‐promoting factor capable of mediating

PTX resistance (Ashrafizadeh, Ahmadi, et al., 2019; Cong, Cui,

et al., 2020; Kim, Cho, et al., 2014; Lee, Chiang, et al., 2014; Lee,

Mohan, et al., 2020). Reducing the expression of STAT3 sensitized

cancer cells to apoptosis and promoted the effects of PTX (Hindupur,

Schmid, et al., 2020; Lee, Kim, et al., 2018; Mohan, Rangappa,

et al., 2020). miRNA‐125a enhanced apoptotic cell death in cervical

tumor by STAT3 inhibition and increased PTX sensitivity (Zhang, Cao,

et al., 2016). A similar finding in NSCLC showed that miRNA‐9600

reduced protein levels of STAT3, without affecting the mRNA levels,

resulting in cell cycle arrest, inhibition of migration, apoptosis

stimulation, and increased PTX sensitivity (Sun, Li, et al., 2016).

These two studies clearly demonstrate that STAT3 inhibition by

miRNAs is of importance in PTX sensitivity via mediating apoptosis.

3.2.3 | miRNAs and c‐Myc signaling

The c‐Myc signaling pathway can increase cancer progression and

induce PTX resistance. Inhibition of c‐Myc can significantly promote

PTX sensitivity (Lei, Hu, et al., 2020). Antitumor compounds such as

silibinin can impair cancer proliferation, and trigger a cellular energy

crisis via regulating c‐Myc signaling (Iqbal, Chattopadhyay,

et al., 2020). Increasing the expression of miRNA‐4282 is correlated

with induction of apoptosis and inhibition of migration. Furthermore,

miRNA‐4282 increased the PTX sensitivity of breast cancer cells by

c‐Myc downregulation (Zhao & Jiang, 2018). Therefore, it seems that

c‐Myc signaling is able to modulate miRNA expression in PTX

sensitivity. This is in contrast to the aforementioned experiment

which showed that c‐Myc overexpression could induce PTX

resistance. c‐Myc activation elevates levels of miRNA‐203b‐3p and

miRNA‐203a‐3p. These miRNAs induce apoptosis by binding to the

3′‐UTR of the mRNA of the anti‐apoptotic protein Bcl‐xl, and

reducing its expression, leading to PTX sensitivity (Aakko, Straume,

et al., 2019). These studies demonstrate that downstream targets of

miRNAs can form a feedback loop to regulate the response of cancer

cells to PTX chemotherapy.

3.2.4 | miRNAs and MyD88 signaling

The role of MyD88 in carcinogenesis is well known. MyD88

downregulation using TJ‐M2010‐2 (a small molecule inhibitor of

MyD88) significantly diminished proliferation, viability, and metasta-

sis in breast cancer cells (Liu, Chen, et al., 2020). Noteworthy,

inhibiting MyD88 was related to a decrease in the stemness of

tumors and increased their sensitivity to chemotherapy (Chen, Luo,

et al., 2020). MyD88 downregulation by miRNA‐155‐3p impaired

breast cancer progression and promoted sensitivity to PTX chemo-

therapy (Zhang, Chen, et al., 2019).
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3.2.5 | miRNAs and PDCD4 signaling

PDCD4 is a new emerging target in cancer therapy. PDCD4

downregulation is associated with cancer progression, which can be

mediated by upstream mediators such as STAT3 and miRNA‐155

(Wang, Song, et al., 2020; Xia & Zhao, 2020). The expression of

miRNA‐21‐5p was increased in breast cancer cells and tissues. This

tumor‐promoting miRNA stimulated cell cycle progression and

inhibited apoptosis in tumors via PDCD4 downregulation, leading

to increased PTX resistance (Tao, Wu, et al., 2019).

3.2.6 | miRNAs and tumor microenvironment

Cancer‐associated fibroblasts (CAFs) are stromal cells within the

tumor microenvironment, which play a role in carcinogenesis and

tumor progression (Crawford, Kasman, et al., 2009; Ligorio, Sil,

et al., 2019). CAFs can participate in cancer progression by

activating signaling pathways or tumor‐promoting factors (Klemm

& Joyce, 2015; Riaz, Havel, et al., 2017). On the other hand,

ferroptosis is a new kind of programmed cell death mediated by

iron‐dependent lipid peroxidation and reactive oxygen species

(ROS) production (Stockwell, Friedmann Angeli, et al., 2017).

Ferroptosis inhibition can decrease the chemosensitivity of cancer

cells. It has been reported that CAFs secrete miRNA‐522 as a

tumor‐promoting factor, which in turn reduces PDCD4 activity to

prevent ferroptosis induction via decreasing lipid peroxidation. It

appears that PTX causes the secretion of miRNA‐522 from CAFs

via activating ubiquitin‐specific protease 7 (USP7) to stabilize the

heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1; Zang, Li,

et al., 2020). This interesting study suggested that the components

in the tumor microenvironment could activate a complicated

signaling pathway involved in PTX resistance.

The downregulation of tumor‐promoting miRNAs sensitizes

cancer cells to apoptotic cell death and impairs their proliferation,

and can be responsible for increasing PTX sensitivity (Song,

Zhang, et al., 2020). Different conditions can stimulate the

upregulation of tumor‐promoting miRNAs to increase PTX

resistance. The tumor microenvironment is well known to show

hypoxia resulting from a poor supply of oxygen to the rapidly

proliferating cancer cells. Hypoxia can trigger the activation of

molecular pathways, such as hypoxia‐inducible factor‐1α (HIF‐

1α) that can stimulate angiogenesis to increase oxygen and

nutrients (Chen, Luo, et al., 2020; Cong, Cui, et al., 2020; Wang,

Wang, et al., 2020). It has been reported that the expression of

some miRNAs is altered in tumor hypoxia (Su, Liao, et al., 2020). It

has been shown that miRNA‐21 can induce PTX resistance via

HIF‐1α upregulation, further confirming the role of this molecular

pathway in chemoresistance (Xie, Cao, et al., 2013). Hypoxia

enhanced the expression of miRNA‐27a in ovarian cancer cells

resulting in reduced expression of apoptotic protease activating

factor 1 (APAF1), and leading to PTX resistance (Feng, Shen,

et al., 2020).

3.2.7 | miRNAs and other molecular pathways

Dicer is an RNA‐binding protein that can regulate the expression of

genes at posttranscriptional level by participating in the biogenesis of

miRNAs (Theotoki, Pantazopoulou, et al., 2020). Dicer plays the role of a

double‐edged sword in cancer, and its activation has been shown to be

involved in chemoresistance (Su, Hsu, et al., 2020). However, the story is

different in PTX chemotherapy, where miRNA‐18a decreased mRNA

and protein levels of Dicer to trigger PTX resistance. Silencing

miRNA‐18a sensitized cancer cells to PTX‐mediated apoptosis (Sha,

Zhang, et al., 2016). Phosphatase and tensin homolog (PTEN) is an

inhibitor of PI3K/Akt signaling, and reduces the proliferation and

metastasis of cancer cells (Abadi, Zarrabi, et al., 2021;

Ashrafizadeh, Zarrabi, et al., 2020). miRNA‐21 inhibited PTEN signaling

to trigger Akt phosphorylation, and promoted Bcl‐2 and survivin

expression to increase PTX resistance (Du, Cao, et al., 2017). PTX

administration can directly affect the expression of some miRNAs in

cancer therapy. For instance, upon PTX administration, the expression

of tumor‐promoting miRNA‐143 was decreased to inhibit bladder

cancer progression (Papadopoulos, Scorilas, et al., 2015). However,

sometimes PTX administration enhances the expression of tumor‐

promoting miRNAs, which should be considered in PTX resistance.

Table 1 and Figure 1 provide an overview of miRNAs regulating

molecular pathways and mechanisms in PTX chemotherapy.

4 | PIWI‐ INTERACTING RNAs

To date, just one experiment has evaluated the role of piRNAs in PTX

chemotherapy, indicating that there is still a long way in revealing the

roles of these ncRNAs in PTX progression/inhibition. This experiment

has focused on piRNA‐36712 as a tumor‐suppressing factor, so that

its expression undergoes downregulation in breast cancer cells and

tissues, and this low expression provides poor clinical outcomes.

Upon piRNA‐36712 downregulation, an increase occurs in expres-

sion level of SEPW1, as downstream target of this piRNA. Then,

SEPW1 increases Slug expression, while it decreases expression

levels of p21 and E‐cadherin, leading to elevated growth and

metastasis of breast tumor cells. piRNA‐36712 is capable of

downregulating SEPW1 expression via providing competition of

SEPW1 mRNA with SEPW1P RNA for miRNA‐7 and miRNA‐324.

SEPW1 inhibition by pi‐36712 synergistically increases the potential

of PTX in breast cancer eradication (Tan, Mai, et al., 2019).

5 | SMALL INTERFERING RNAs

After the discovery of siRNA, it was extensively applied in the field of

cancer therapy and suppressing the progression of malignant cells via

downregulating tumor‐promoting factors. Then, it was found that

combination of siRNA and chemotherapeutic agents can promote the

sensitivity of cancer cells to chemotherapy (Chen, Zhang, et al., 2017;

Wang, Zhao, et al., 2017; Yang, Meng, et al., 2018). Such strategy has
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TABLE 1 miRNAs regulate response of cancer cells to PTX chemotherapy

miRNA Cancer type
Effect on paclitaxel
chemotherapy Results References

miRNA‐26b Gastric cancer Sensitivity Reduced CDC6 expression Zhao, Zhang, et al. (2019)

Suppressed cancer proliferation and invasion

Apoptosis induction

miRNA‐34c Gastric cancer Sensitivity E2F1 inhibition enhanced miRNA‐34c
expression

Liu, Tian, et al. (2020)

Apoptosis induction and impaired cancer cell

proliferation

miRNA‐150 Ovarian cancer Sensitivity Impaired cancer cell growth Kim, Jeong, et al. (2017)

Triggered apoptosis

Suppressed angiogenesis

Notch3 downregulating and inhibition of

downstream targets, Bcl‐2, Bcl‐W, cyclin
D3, pS6, and NF‐κB

miRNA‐134 Ovarian cancer Sensitivity Impaired malignancy and increased drug

sensitivity

Zhu, Yang, et al. (2016)

miRNA‐200c Ovarian cancer Sensitivity Increased anoikis and adherence Cittelly, Dimitrova,
et al. (2012)

Reduced tumor formation

Increased PTX sensitivity

miRNA‐134 Ovarian cancer Sensitivity Upregulated Pak2 expression Shuang, Wang, et al. (2015)

Induced Bad phosphorylation at Ser112 and
Ser136

Triggered apoptosis

miRNA‐193b‐p Ovarian carcinoma Sensitivity Downregulated PAK3 expression Zhang, Qin, et al. (2017)

Suppressed cancer proliferation

Reversed PTX resistance

miRNA‐107 Breast cancer Sensitivity Apoptosis induction Wang, Ma, et al. (2019)

Reduced cell viability and growth

Downregulating Wnt1, β‐catenin, and cyclin D1

miRNA‐26a Breast cancer Sensitivity Decreased cell proliferation Gao, Li, et al. (2013)

Prevented colony formation

Migration inhibition

Apoptosis induction

Mcl‐1 downregulation

miRNA‐451 Breast cancer Sensitivity Suppressed cancer cell growth and migration Wang et al. (2017)

Apoptosis stimulation

Triggered cell cycle arrest

Downregulated YWHAZ expression

miRNA‐30e Breast cancer Sensitivity Inhibited tumor growth via downregulating Akt
and ERK1/2 pathways

Liu, Li, et al. (2017)

Suppressed migration and metastasis of cancer
cells

Downregulated expression of IRS1 and HIF‐1α
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TABLE 1 (Continued)

miRNA Cancer type
Effect on paclitaxel
chemotherapy Results References

miRNA‐153‐5p Breast cancer Sensitivity Downregulated CDK1, Akt, and cyclin B1 Wang, Wu, et al. (2020)

Triggered cell cycle arrest in G2/M phase

miRNA‐155‐3p Breast cancer Sensitivity Apoptosis induction Wang, Yan, et al. (2018)

Induced cell cycle arrest in G0/G1 phase

Disrupted cancer metastasis

Upregulated MYD88 and TP53INP1

miRNA‐125b Breast cancer Sensitivity Inhibited EMT Yang, Wang, et al. (2015)

Sema4C downregulation

Reversed PTX resistance

miRNA‐451 Breast cancer Sensitivity Reduced Bcl‐2 at mRNA and protein levels Gu, Li, et al. (2015)

Caspase‐3 upregulation

Apoptosis induction

miRNA‐34a Cervical cancer Sensitivity Combination therapy with miRNA‐34a, PTX,
and microbubbles

Yu, Zhao, et al. (2020)

Reduced cancer proliferation

Decreased microvessel density

Downregulated Bcl‐2 and CDK6

miRNA‐16 Lung cancer Sensitivity Caspase‐3 activation Chatterjee, Chattopadhyay,
et al. (2015)

miRNA‐17 Apoptosis induction

Reversed PTX resistance

miRNA‐186 Lung cancer Sensitivity P53 upregulation and subsequent apoptosis Ye, Zhang, et al. (2016)

miRNA‐195 Non‐small cell lung
cancer

Sensitivity CHEK1 downregulation Yu, Zhang, et al. (2018)

Reversed PTX resistance

miRNA‐422a Osteosarcoma Sensitivity Apoptosis stimulation Liu, Xiusheng, et al. (2016)

Downregulated TGF‐β2 and downstream
targets Smad2 and Smad3

miRNA‐203 Colorectal cancer Sensitivity Downregulated SIK2 by binding to its 3′‐UTR Liu, Gao, et al. (2016)

miRNA‐34a Prostate cancer Sensitivity Reduced expression levels of SIRT1, HuR, and
Bcl‐2

Kojima, Fujita, et al. (2010)

Reversed PTX resistance

miRNA‐493‐3p Breast cancer Resistance Downregulated Mad2 expression by binding to
the 3′‐UTR

Tambe, Pruikkonen,
et al. (2016)

Ovarian cancer Triggered premature mitotic exit

Increased aneuploidy

Induced cellular senescence

Associated with poor prognosis in cancer
patients

(Continues)
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been applied in PTX sensitivity. Notch3 is a potential therapeutic target

for inhibiting the proliferation and viability of cancer cells (Yen, Fischer,

et al., 2015), where its overexpression occurs in PTX resistant‐cancer

cells, and its inhibition enhances apoptosis in ovarian cancer cells

(Rahman, Nakayama, et al., 2012). Notch3 inhibition by siRNA

significantly suppresses proliferation, invasion, and sphere‐formation

capacity of ovarian cancer cells. It has been reported that Nothc3‐siRNA

is efficient in enhancing PTX‐mediated apoptosis and cell cycle arrest

(G2/M phase) in chemoresistant‐ovarian cancer cells (Kang, Jeong,

et al., 2016). However, most of the studies have focused on developing

nanocarriers for delivery of siRNA in PTX sensitivity. This is due to

degradation of siRNA by RNase enzymes and also, off‐targeting feature,

minimizing efficiency of siRNA when it is applied in vivo. Therefore, the

utilization of siRNA for cancer treatment in clinical course requires

further progress to improve its potential. For this reason, scientists have

focused on developing nanostructures for protecting siRNA against

degradation, enhancing its intracellular accumulation, minimizing its off‐

targeting feature, increasing its efficiency in gene silencing, and finally,

providing PTX sensitivity (Büyükköroğlu, Şenel, et al., 2019; Byeon, Lee,

et al., 2018; Liu, Lo, et al., 2019; Liu, Long, et al., 2020; Michael, Lam,

TABLE 1 (Continued)

miRNA Cancer type
Effect on paclitaxel
chemotherapy Results References

miRNA‐520h Breast cancer Resistance Protected cells against PTX‐induced apoptosis Su, Wang, et al. (2016)

Downregulated DAPK2 expression

Associated with lymph node metastasis in
patients

miRNA‐18a Triple‐negative breast

cancer

Resistance Induced autophagy as a pro‐survival mechanism Fan, Dai, et al. (2016)

Downregulated mTOR signaling

miRNA‐590‐5p Gastric cancer Resistance Increased tumor size and lymph node
metastasis

Shen, Yu, et al. (2016)

Correlated with poor prognosis

Increased cancer cell proliferation and
migration

Activated STAT3 and Akt/ERK pathways

miRNA‐4262 Non‐small cell lung
cancer

Resistance Increased cell survival and invasion Sun, Zhou, et al. (2019)

Induced PI3K/Akt signaling via PTEN
downregulation

Triggered PTX resistance

miRNA‐935 Non‐small cell lung
cancer

Resistance Reduced SOX7 expression by binding to its
3′‐UTR

Peng, Li, et al. (2018)

Increased cell growth

Apoptosis inhibition

Increased Bcl‐2 and Akt levels

miRNA‐29a Colorectal cancer Resistance Overexpression of miRNA‐29a in PTX‐resistant
cancer cells

Yuan, Li, et al. (2018)

Downregulated PTEN expression

Activated Akt signaling

Promoted proliferation

miRNA‐140‐3p Chordoma Resistance Reduced PTEN expression Zhao, Li, et al. (2019)

miRNA‐155‐5p Triggered PI3K/Akt/mTOR signaling

miRNA‐363 Ovarian cancer Resistance Inhibited LATS2 expression Mohamed, Hassan,
et al. (2018)

Decreased PTX sensitivity
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et al., 2020; Wang, Yan, et al., 2019; Yang, Zhang, et al., 2020; Yu, Bi,

et al., 2019; Zhang, Zhao, et al., 2020; Zhu, Yang, et al., 2017). Thanks to

the efforts performed in providing siRNA delivery towards PTX

sensitivity, to date, a variety of nanoarchitectures have been designed

for siRNA delivery. Recently, PTX‐ and E7‐siRNA‐loaded polymeric

nanocarriers have been developed for synergistic chemotherapy of

cervical cancer. The benefit of this study is that both in vitro and in vivo

experiments were performed to show their efficacy. In HeLa cells, these

nanostructures enhance PTX sensitivity via suppressing Akt signaling. In

vivo experiment demonstrates an increase in tumor accumulation (up to

threefold increase) and promoted immune escape ability that can

suppress tumor growth up to 83.6% (Xu, Liu, et al., 2020). As cervical

cancer is a leading cause of death in women, vaginal nanoformulations

for co‐delivery of PTX and Bcl‐2‐siRNA have been developed. The

resulting solid lipid nanoparticles (SLNs) have zeta potential of

22–48mV, showing their stability and also, particle size of 180 nm is

of importance for penetration into cancer cells. By downregulating Bcl‐2

as an anti‐apoptotic factor, SLNs remarkably promote PTX sensitivity of

cervical cancer cells (Büyükköroğlu, Şenel, et al., 2016). It is worth

mentioning that two siRNAs can also be loaded on nanocarriers for

potentiating antitumor activity of PTX. In fact, due to progress in the

field of molecular biology and genetics, tumor‐promoting factors

involved in PTX resistance have been identified, and the next step is

for bioengineers to develop effective nanocarriers. The MDR1‐siRNA‐

and Bcl‐2‐siRNA‐loaded polymeric nanoparticles can dually down-

regulate expression levels of MDR1 and Bcl‐2 as factors involved in

chemoresistance to enhance PTX sensitivity of ovarian cancer cells

(Risnayanti, Jang, et al., 2018). The distinct properties of tumor

microenvironment such as mild acidic pH can be employed for

developing stimuli‐responsive nanoparticles in siRNA delivery. An

experiment has prepared pH‐sensitive polymeric nanostructures for

co‐delivery of PTX and survivin‐siRNA in lung tumor therapy. The

release of drug and siRNA from these nanocarriers occurs at pH 5.5

which is similar to pH of tumor microenvironment. Exposure of A549

cells to these nanostructures suppresses their proliferation and

increases cellular uptake of both PTX and siRNA. Tumor proliferation

inhibition and increased survival of mice occur using PTX‐ and survivin‐

siRNA‐loaded polymeric nanostructures (Jin, Jin, et al., 2018). Overall,

the following points can be concluded from these studies:

1) siRNA is a potential tool in reversing PTX resistance enhancing

PTX‐mediated apoptosis and cell cycle arrest in cancer cells via

downregulating tumor‐promoting factors,

2) The synergistic impact between siRNA and PTX has made this

combination an appropriate strategy in cancer chemotherapy,

3) In order to elevate efficiency of siRNA in gene silencing and

chemosensitivity, different nanocarriers have been developed for

co‐delivery of siRNA and PTX, and

4) More progress should be made in evaluating biocompatibility of

siRNA‐ and PTX‐loaded nanostructure to make them appropriate

for clinical trials (Table 2 and Figure 2).

6 | SHORT‐HAIRPIN RNAs

With respect to the potential of shRNA in silencing tumor‐promoting

factors, this strategy is beneficial in impairing progression of cancer

cell, and enhancing their sensitivity to PTX chemotherapy. Multidrug

F IGURE 1 Response of cancer cells to PTX chemotherapy is regulated by miRNAs. Molecular pathways including mTOR, Mad2, STAT3, ERK,
and SOX7 are among those affected by miRNAs. Furthermore, in modulating response to PTX chemotherapy, proliferation, and invasion of
cancer cells are influenced by miRNAs
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TABLE 2 Application of siRNA for promoting PTX sensitivity in cancer treatment

siRNA Cancer type Delivery method Remarks References

Bcl‐2 Melanoma Liposome Smart nanoparticles sensitive to pH Reddy, Garikapati,

et al. (2016)

Exerting synergistic impact

Decreasing cancer proliferation and survival

Efficacy in vitro and in vivo

Interleukine‐1α Colon
adenocarcinoma

Polymeric
nanoparticles

Combination cancer therapy Ou, Byeon,
et al. (2019)

Particle size less than 200 nm

Selective targeting of cancer cells via phrin‐A2 receptor‐
specific peptide modification of nanocarriers

RelA Prostate cancer Gold nanoparticles Stimulating efficient endosomal escape of siRNA Luan, Rahme,
et al. (2019)

Downregulating RelA gene

Sustained systemic exposure

Downregulation of NF‐κB signaling

Enhancing PTX sensitivity

Survivin Brain glioma Cationic liposomes Dual modification of liposomes with aptamer and low‐
density lipoprotein receptor‐related protein for

enhancing selectivity toward cancer cells

Sun, Chen,
et al. (2018)

Apoptosis induction

High cytotoxicity against cancer cells

VEGF Glioma Polymeric

nanoparticles

Enhancing cell distribution Wen, Wen,

et al. (2020)

Receptor‐mediated delivery into cells

Increasing apoptosis

Inhibiting neovascularization

Elevating PTX sensitivity

MDR1 Breast cancer Micelles Particle size of 171.6 nm Yang, Zhu,
et al. (2017)

Encapsulation efficiency as much as 93%

Specific targeting of cancer cells overexpressing LDL

receptor

Protecting siRNA from degradation by macrophage
phagocytosis

Downregulating MDR1 and P‐gp expression levels

Increasing PTX sensitivity

eIF4E Breast cancer Lipid nanoparticles Intravenous administration results in gene silencing for at
least 1 week

Gujrati, Vaidya,
et al. (2016)

pH‐sensitive

Enhancing PTX sensitivity

Negligible side effects
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resistance 1 P‐glycoprotein (MDR1) is responsible for inducing

resistance of cancer cells to PTX chemotherapy via providing efflux

of this chemotherapeutic agent (Fan, Zhu, et al., 2020; Kikuchi,

Maishi, et al., 2020). Exposure of cancer cells to MDR1‐shRNA is

associated with an increase in their sensitivity to PTX chemotherapy,

and in vivo experiment on mice demonstrates a significant decrease

in tumor growth (Zhang, Wang, et al., 2012). It is worth mentioning

that both mRNA and protein levels of target gene decrease upon

shRNA transfection of cancer cells, resulting in PTX‐mediated

apoptosis and decrease in cell survival and proliferation (Jin, Xie,

et al., 2014). More importantly, by downregulating an upstream

mediator via shRNA, a signaling network that is responsible for

cancer growth is disrupted, paving the way for chemosensitivity. It

has been reported that transforming growth factor β‐activated

protein kinase 1 (TAK1)‐binding protein 3 (TAB3) is a tumor‐

promoting factor and is vital for TAK1 activation in response to

TNF‐α or IL‐1β. TAB3 inhibition by shRNA results in enhanced

sensitivity of ovarian cancer cells via downregulating NF‐κB signaling

TABLE 2 (Continued)

siRNA Cancer type Delivery method Remarks References

Bcl‐2 Breast cancer Polymeric micelles Caspase‐3 cleavage Lee, Lee, et al. (2017)

Downregulating Bcl‐2 expression

Apoptosis induction

Increasing PTX sensitivity

Survivin Lung cancer Nanobubble SiRNA protection against degradation Akbaba, Erel‐Akbaba,
et al. (2020)

Enhancing its cellular uptake

Apoptosis stimulation

Exerting synergistic impact

TR3 Pancreatic cancer Peptide‐modified

dendrimers

Redox‐responsive Li, Wang,

et al. (2017)

Providing endosomal escape

Preventing intracellular degradation

Facilitating PTX and siRNA release

Enhancing PTX sensitivity

F IGURE 2 Application of siRNA in reversing PTX resistance via suppressing molecular pathways responsible for cancer progression
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(Chen, Wang, et al., 2016). In fact, TAB3 inhibition by shRNA paves

the way for NF‐κB downregulation and PTX sensitivity of cancer

cells. Another experiment using shRNA screening also reveals the

role of NF‐κB signaling in PTX resistance (Lai, Fang, et al., 2020). In

addition to NF‐κB, Notch1 plays a significant role in PTX resistance of

cancer cells. Notch1 overexpression in cancer patients (head and

neck cancer) reduces response to PTX chemotherapy (Zhang, Zhou,

et al., 2019). Notch1 downregulation is correlated with an increase in

potential of PTX in cancer elimination via caspase‐3 and ‐9

upregulation and Bcl‐2 downregulation, resulting in apoptotic cell

death (Zhou, Sun, et al., 2017). Exposing MCF‐7 cells (breast cancer

cells) to Notch1‐shRNA promotes PTX‐mediated cell death and

impairs their proliferation and progression. It seems that upon

Notch1 inhibition by shRNA, expression level of NF‐κB as an anti‐

apoptotic factor undergoes downregulation that is responsible for

increased PTX‐mediated apoptosis (Mao, Song, et al., 2013). A similar

phenomenon occurs after Akt2 inhibition. Colorectal cancer cells are

capable of obtaining PTX resistance via upregulation Akt2 expres-

sion. Inhibiting Akt2 signaling via shRNA paves the way for

downregulation of MDR1 and MRP1, leading to increased PTX‐

induced apoptosis (Ding, Xu, et al., 2015).

Although previous studies demonstrate the potential of shRNA in

gene silencing and increasing PTX sensitivity, it appears that

designing carriers for shRNA delivery can significantly enhance its

intracellular accumulation and promote its efficacy in gene silencing.

Such strategy has been developed and investigated by different

studies to shed some light on shRNA‐mediated delivery in potentiat-

ing cancer therapy and PTX sensitivity. To date, different kinds of

nanoparticles have been developed for shRNA delivery (Chen, Fan,

et al., 2020; Sánchez‐Sarasúa, Ribes‐Navarro, et al., 2021; Xu, Zhou,

et al., 2020). Each of them has its own unique feature, but overall,

they are beneficial in enhancing intracellular accumulation of shRNA

and PTX, as well as promoting chemosensitivity. The upregulation of

survivin is responsible for PTX resistance of ovarian cancer cells. To

provide PTX sensitivity, an experiment has designed polymeric

micelles containing survivin‐shRNA and PTX. The PTX is embedded

in core, while shRNA is attached to shell of micellar nanoparticles. By

enhancing penetration of shRNA and PTX into cancer cells, a

significant decrease occurs in expression levels of Bcl‐2 and survivin,

sensitizing ovarian cancer cells to PTX‐mediated apoptosis (Hu, Li,

et al., 2012). Another study has applied polymeric nanoparticles for

survivin‐shRNA delivery in lung cancer treatment. The efficient

delivery of shRNA to nuclei of A549 cells, enhances efficacy of

shRNA in gene silencing (survivin downregulation). Then, PTX

effectively induces apoptosis and cell cycle arrest (G2/M phase) in

lung cancer cells (Shen, Yin, et al., 2012). One of the important

possibilities is the surface modification of nanocarriers for enhancing

their selectivity toward cancer cells. The tripeptide arginine−glycine

−aspartic sequence (RGD) can specifically bind to integrin αvβ3

(Murphy, Majeti, et al., 2008). Therefore, surface modification of

nanoparticles with RGD promotes their entrance into cancer cells.

The RGD‐modified polymeric nanoparticles can enhance intracellular

accumulation of survivin‐shRNA in lung cancer cells, leading to their

PTX sensitivity (Shen, Meng, et al., 2014). In addition to targeting

proliferation of cancer cells, shRNA‐loaded nanostructures can affect

migration and invasion of cancer cells in providing PTX sensitivity.

The Twist is an inducer of EMT, and its overexpression promotes

cancer metastasis (Sonongbua, Siritungyong, et al., 2020; Wang, Liao,

et al., 2020). It has been reported that Twist‐shRNA‐ and PTX‐loaded

polymeric nanoparticles can downregulate the expression level of

Twist at protein levels up to 91%, which is of importance in disrupting

breast cancer invasion and increasing their PTX sensitivity (Shen, Sun,

et al., 2013). Overall, the following conclusions can be made from

shRNA in PTX chemotherapy:

1) The first step is identification of tumor‐promoting factors and

designing shRNA for downregulation and impairing cancer

progression,

2) The shRNA can significantly enhance PTX sensitivity of cancer

cells, and

3) In order to promote intracellular accumulation of shRNA and its

efficacy in gene silencing as well as promoting potential in PTX

sensitivity, delivery methods have been developed (Figure 3 and

Table 3; Guo, Hong, et al., 2012; Long, Yin, et al., 2012; Zhou,

Zhang, et al., 2018).

7 | LONG NONCODING RNAs

As mentioned above, the increased migration and proliferation of cancer

cells is correlated with the development of chemoresistance (Manu,

Shanmugam, et al., 2014; Manu, Shanmugam, et al., 2015). The lncRNA

MAPT‐AS1 was overexpressed in breast cancer cells and increased

growth, viability, and invasion. This was mediated by upregulation of the

tumor‐promoting factor MAPK. MAPT‐AS1 silencing was correlated

with less cancer progression and increased sensitivity to PTX

chemotherapy (Pan, Pan, et al., 2018). In contrast, tumor‐suppressing

lncRNAs, such as KB‐1471A8.2 can enhance PTX sensitivity. The

lncRNA KB‐1471A8.2 induced cell cycle arrest in the G0/G1 phase and

increased the PTX sensitivity in ovarian cancer cells (Zhang, Liu,

et al., 2019). Some lncRNAs can affect molecular mechanisms with a

role in chemosensitivity, such as autophagy (Wu, Liu, et al., 2020).

Targeting upstream mediators to promote autophagy and increase PTX

sensitivity is of importance (Deng, Shanmugam, et al., 2019; Singh, Vats,

et al., 2018). The antisense intronic (Ai) lncRNA EGOT induced

autophagy and promoted autophagosome formation via ITPR1 upregu-

lation, leading to increased PTX sensitivity (Xu, Wang, et al., 2019).

However, the dual role of autophagy in cancer cells should be

considered. Although the above‐mentioned study suggested that

induction of autophagy could promote PTX sensitivity, there are other

studies demonstrating that autophagy activation can actually stimulate

PTX resistance (Wang, Liu, et al., 2020; Zhao, Wang, et al., 2021). This is

due to fact that autophagy plays the role of a double‐edged sword in

cancer, and its exact role in each situation is not certain. Further studies

will be required to shed more light on the regulation of autophagy by

lncRNAs, and its impact on PTX chemotherapy.
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Protein kinase B (Akt) is a potential target of lncRNAs in cancer

cells. The lncRNA FER1L4 triggered apoptosis in osteosarcoma cells

and impaired their viability and proliferation via Akt downregulation

(Ye, Tian, et al., 2019). Furthermore, silencing of lncRNA XIST

promoted miRNA‐126 expression to suppress Akt signaling, leading

to impairment of glucose metabolism and inhibition of proliferation

(Cheng, Luo, et al., 2020). The lncRNA H19 reduced Akt expression

to induce apoptosis in triple‐negative breast cancer cells, resulting in

increased PTX sensitivity (Han, Han, et al., 2018). The interaction

between lncRNAs and miRNAs is important to predict the response

of cancer cells to PTX chemotherapy (Jiang, Liu, et al., 2016). LncRNA

H19 functions as a tumor‐promoting factor in several cancer types.

The positive association of H19 with miRNA‐675 led to EMT

induction and increased cancer progression (Peperstraete, Lecerf,

et al., 2020). In addition to metastasis, H19 can enhance cancer

proliferation and viability via p53 downregulation (Li, Ma, et al., 2020).

LncRNA H19 downregulated miRNA‐193a‐3p expression to reduce

the sensitivity of hepatocellular carcinoma cells to PTX chemo-

therapy (Ma, Yuan, et al., 2018). Some lncRNAs can regulate mitosis,

for instance, lncRNA MA‐linc1 can affect the cell cycle by reducing

the number of cells in the G1 phase and increasing the number in the

G2/M phase. The impact of MA‐linc1 on the cell cycle is mediated via

the inhibition of a neighboring gene, known as Purα that inhibits

apoptosis in cancer cells, leading to increased PTX resistance (Bida,

Gidoni, et al., 2015). The identification of lncRNAs capable of

triggering apoptosis in cancer cells is of interest to increase PTX

sensitivity (Zheng, Li, et al., 2020). Furthermore, lncRNAs can also

regulate miRNAs which are involved in the regulation of cell cycle

and apoptosis. LncRNA CCAT1 lowers the expression of miRNA‐

181a via sponging, to inhibit apoptosis in nasopharyngeal cancer

cells, leading to PTX resistance (Wang, Zhang, et al., 2017). The

lncRNA CCAT1 is a tumor promoter that is also involved in

chemosensitivity. Silencing CCAT1 increased the sensitivity of

prostate cancer cells to PTX chemotherapy via upregulating

miRNA‐24‐3p (Wu, Liu, et al., 2020). Clinical studies have confirmed

the role of lncRNAs in triggering PTX resistance. A clinical study

evaluated 144 patients with breast cancer and demonstrated that

single nucleotide polymorphisms in lncRNA MEG3 were correlated

with a better response of cancer patients to PTX chemotherapy

(Bayarmaa, Wu, et al., 2019). The identification of novel lncRNAs

involved in PTX resistance can be accelerated by the use of next‐

generation deep sequencing (Ren, Li, et al., 2016).

An important function of lncRNAs in cancer is their ability to regulate

the activity of drug efflux transporters. ATP‐binding cassette (ABC)

transporters are the best understood type of efflux transporters in cancer,

and their upregulation by lncRNAs can lead to PTX resistance. One

example of this was the lncRNA CTD‐2589M5.4 (Ma, Yuan, et al., 2018).

The methylation level of lncRNAs can determine the cancer response to

PTX chemotherapy. Hypermethylation of lncRNA MEG3 reduced the

PTX sensitivity of breast cancer cells, and the prevention of MEG3

methylation could be considered as a strategy to improve the response of

breast cancer cells to PTX chemotherapy (Li, Wang, et al., 2020).

LncRNA MALAT1 is able to promote cancer proliferation via

induction of autophagy and downregulation of miRNA‐204 (Shao,

Zhao, et al., 2020). The expression of MALAT1 was upregulated in

ovarian cancer cells and was correlated with proliferation, migration,

and cisplatin resistance (Wang et al., 2020). A similar result was

observed in non‐small lung cancer cells treated with PTX. In vitro and

in vivo experiments showed that MALAT1 and miRNA‐197‐3p acted

together to reduce p120 expression, thereby increasing proliferation

and migration, as well as inducing PTX resistance (Yang, Li,

et al., 2019). MALAT1 was overexpressed in laryngeal squamous cell

F IGURE 3 The application of shRNA in enhancing PTX sensitivity of cancer cells
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TABLE 3 The critical role of shRNA in enhancing PTX sensitivity of cancer cells

shRNA Cancer type Delivery method Remarks References

Survivin Ovarian cancer Micelles downregulating survivin gene as an anti‐apoptotic
factor

Hu, Li, et al. (2012)

Impairing cancer progression

Enhancing PTX sensitivity

TAB3 Ovarian cancer – downregulating TAB3 expression and subsequent
inhibition of NF‐κB signaling

Chen, Wang, et al.
(2016)

Enhancing PTX sensitivity via impairing cancer

progression and proliferation

Survivin Lung cancer Polymeric nanoparticles Enhancing nuclei delivery of survivin‐shRNA and
enhancing its potential in gene silencing

Shen, Yin, et al.
(2012)

Promoting PTX‐mediated apoptosis and cell cycle
arrest (G2/M phase)

Survivn Lung cancer RGD‐modified polymeric
nanoparticles

Enhancing intracellular accumulation of cancer
cells via RGD modification

Shen, Meng, et al.
(2014)

Reducing surivivn expression

Elevating apoptotic cell death

Twist Breast cancer Polymeric nanostructures Suppressing migration and invasion of cancer cells Shen, Sun, et al.
(2013)

Inhibiting Twist expression

Increasing penetration of PTX and shRNA in
cancer cells

Enhancing PTX sensitivity

Akt1 Breast cancer Thermosensitive hydrogels Exerting synergistic impact Guo, Hong, et al.

(2012)

Suppressing cancer progression in vitro and
in vivo

Downregulating Akt1 expression

Increasing PTX sensitivity

Notch1 Breast cancer – Downregulating Notch1 expression and subsequent
inhibition of NF‐κB signaling

Mao, Song, et al.
(2013)

Sensitizing cancer cells to apoptosis

Enhancing PTX sensitivity

Aurora A Breast cancer Adenovirus Reducing aurora A expression at mRNA and

protein levels

Long, Yin, et al.

(2012)

Disrupting cancer proliferation

Increasing PTX sensitivity

Akt2 Colorectal cancer – Suppressing viability and growth of cancer cells Ding, Xu, et al. (2015)

Increasing apoptotic cell death

Promoting PTX‐mediated cancer inhibition impact

Survivin Esophageal squamous
cell carcinoma

Lentivirus Impairing growth of cancer cells Zhou, Zhang, et al.
(2018)

Reducing their colony‐formation capacity

Suppressing invasion and migration

Promoting PTX sensitivityp
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carcinoma patients, where it prevented apoptosis, increased invasion,

and led to PTX resistance (Yu, et al., 2020). It seems that downstream

targets of lncRNAs are also involved in mediating PTX resistance.

Mitogen‐activated protein kinase (MAPK) overexpression was asso-

ciated with poor prognosis and triggered drug resistance (Sato,

Schoenfeld, et al., 2020). MAPK upregulation in hypoxic conditions is

correlated with the resistance of cancer cells to chemotherapy

(Lu et al., 2020). In PTX‐resistant endometrial cancer cells, the

lncRNA HEIH stimulated the MAPK signaling pathway to enhance

cancer survival and growth, leading to PTX resistance. HEIH

downregulation was correlated with the reversal of PTX resistance

via MAPK inhibition (Guo et al., 2020). In contrast to HEIH, the

lncRNA FER1L4 downregulated the MAPK signaling pathway to

suppress the progression of ovarian cancer cells, leading to PTX

sensitivity (Liu et al., 2018). The association of MAPK with PTX

resistance can be attributed to its effects on other factors, such as

Slug. It has been reported that lncRNA SNHG12 stimulated the

MAPK/Slug axis to promote cancer progression, invasion, and

proliferation, leading to PTX resistance (Wang, Chen, et al., 2017).

The regulation of EMT by lncRNAs leading to PTX resistance

suggests this mechanism could be a potential target to reverse

chemoresistance. In EMT, the epithelial marker E‐cadherin is down-

regulated, while mesenchymal markers such as vimentin and N‐cadherin

are increased (Hwang et al., 2020; Ko, Nam, et al., 2018; Loh, Chai,

et al., 2019). EMT activation leads to increased cancer stemness (Wilson,

Weinberg, et al., 2020) and drug resistance (Galle, Thienpont, et al., 2020;

Nilsson, Sun, et al., 2020). The lncRNA PVT1 reduced the expression of

miRNA‐195 in cervical cancer cells to stimulate EMT, resulting in PTX

resistance (Shen, Cheng, et al., 2017). The overexpression of zinc finger

E‐box binding homeobox 1 (ZEB1) induced metastasis and invasion of

cancer cells via EMT induction (Drápela, Bouchal, et al., 2020; Wu,

Zhong, et al., 2020). Regulating the expression of ZEB1 can inhibit the

migration and invasion of cancer cells. It was reported that lncRNA

NEAT1 decreased miRNA‐194 expression to stimulate ZEB1, resulting

in PTX resistance (Liu, Li, et al., 2017). In addition to ZEB1, the Wnt/β‐

catenin signaling pathway can act as an upstream mediator of EMT in

cancer cells (Zhang, Du, et al., 2020). The tumor‐promoting factor

lncRNA ZFAS1 enhanced the expression and activation of Wnt in

gastric cancer cells to promote EMT and increase metastasis. down-

regulation of ZFAS1 was correlated with a reduction in β‐catenin

expression, inhibition of gastric cancer metastasis, and increased PTX

sensitivity (Xu, He, et al., 2018). These studies bolster the conclusion

that several lncRNAs are determining factors in regulating the response

of cancer cells to PTX chemotherapy (Figure 4 and Table 4; Chen, Shen,

et al., 2020; Horita, Kurosaki, et al., 2019; Shen, Cheng, et al., 2017; Shi

& Wang, 2018; Yang, Meng, et al., 2018).

8 | CIRCULAR RNAs

CircRNAs have been less well investigated in cancer, compared to

miRNAs and lncRNAs. However, it is now clear that circRNAs play a

significant role in cancer and can regulate the response of cancer cells

to chemotherapy, including PTX chemotherapy. In this section, a

mechanistic discussion of the role of circRNAs in PTX resistance/

sensitivity is provided.

Metastasis and invasion of cancer cells can be enhanced

by ZEB1, which also leads to PTX resistance. Furthermore, drug

efflux transporters such as P‐gp can increase PTX resistance by

decreasing the intracellular accumulation of this drug in cancer cells.

F IGURE 4 LncRNAs as key regulators of cancer response to PTX chemotherapy. Noteworthy, miRNAs are the most well‐known
downstream targets of lncRNAs
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TABLE 4 Long noncoding RNAs as regulators of paclitaxel sensitivity and resistance

LncRNA Cancer type
Effect on paclitaxel
chemotherapy Results References

FTH1P3 Breast cancer Resistance Reduced miRNA‐206 expression by acting as
competing endogenous RNA

Yang, Meng,
et al. (2018)

Induced ABCB1 expression

Enhanced cancer cell proliferation and cell cycle

progression

AC073284.4 Breast cancer Sensitivity Reduced miRNA‐18b‐5p via sponging Wang et al. (2019)

upregulated DOCK4 expression

Suppressed EMT and metastasis

CASC2 Breast cancer Resistance Induced CDK19 expression via miRNA‐18a‐5p
inhibition

Zheng, Dong,
et al. (2019)

Enhanced cancer progression and reduced PTX
cytotoxicity

MEG3 Breast cancer Sensitivity Apoptosis induction Zhu, Wang, et al.
(2020)

Inhibited cancer metastasis

MiRNA‐4513 inhibition

Upregulated PBLD expression

LINC00511 Breast cancer Resistance Downregulated miRNA‐29c expression Zhang, Zhao, et al.
(2019)

CDK6 upregulation

Decreased cytotoxicity of PTX against cancer cells

H19 Breast cancer Resistance Enhanced metastasis of cancer cells via EMT

induction

Yan, Yang, et al.

(2020)

MiRNA‐340‐3p sponging

H19 Breast cancer Resistance Inhibited cell apoptosis Si, Zang, et al.
(2016)

Inhibited transcription of BIK and NOXA

NONHSAT141924 Breast cancer Resistance Increased cancer proliferation Zhu, Wang, et al.
(2020)

Enhanced cell survival

Increased levels of CREB and Bcl‐2

UCA1 Breast cancer Resistance Reduced miRNA‐613 via sponging Liu, Jiang, et al.
(2020)

CDK12 modulation

Enhanced cancer progression

LINC‐PINT Triple‐negative breast
cancer

Sensitivity Degraded NONO in a proteasome‐mediated
manner

Yan, Yang, et al.
(2020)

Silencing of LINC‐PINT enhanced PTX sensitivity

KCNQ1OT1 Lung cancer Resistance Enhanced expression of MDR1 Ren, Xu, et al.

(2017)
Increased cancer malignancy

Mediated PTX resistance

ENST00000500843 Lung adenocarcinoma Sensitivity Upregulation of this lncRNA promoted PTX
sensitivity

Tian, Gao, et al.
(2019)

Sensitized cancer cells to apoptosis

CDKN2B‐AS Endometrial

carcinoma

Resistance Association with high pathological grade Shang, Ao, et al.

(2019)
Low response to PTX chemotherapy

MiRNA‐125a‐5p downregulation

Enhanced expression of Bcl‐2 and MRP4 as tumor‐
promoting factors
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TABLE 4 (Continued)

LncRNA Cancer type
Effect on paclitaxel
chemotherapy Results References

LINC00672 Endometrial cancer Sensitivity Mediated p53‐induced inhibition of LASP1 Li, Li, et al. (2017)

Suppressed cancer aggressive behavior

Promoted PTX sensitivity

NEAT1 Endometrial
carcinoma

Resistance MiRNA‐361 sponging Dong, Xiong, et al.
(2019)

Enhanced proliferation and invasion

STAT3 upregulation

Linc00518 Prostate cancer Resistance MiRNA‐216‐5p downregulation He, Sun, et al.

(2019)
Triggered PTX resistance

SNHG6 Prostate cancer Resistance Sponging miRNA‐186 Cao, Sun, et al.
(2020)

Promoted cancer proliferation and invasion

Induced PTX resistance

AFAP1‐AS1 Prostate cancer Resistance Decreased expression levels of miRNA‐195‐5p Leng, Liu, et al.
(2020)

Apoptosis inhibition

DANCR Prostate cancer Resistance Reduced miRNA‐135a expression Zhao, Zhang, et al.
(2019)

Increased cancer cell proliferation

Prevented apoptosis

PVT1 Gastric cancer Resistance Stimulated lymph node invasion Ding, Li, et al.
(2014)

Increased cancer malignancy

Increased PTX resistance

HOTAIR Gastric cancer Resistance Downregulated miRNA‐217 expression Wang, Qin, et al.
(2018)

Enhanced cell proliferation, migration, and cell cycle
progression

Increased expression levels of GPC5 and PTPN14

Mediated PTX resistance

CRNDE Colorectal cancer Resistance Reduced miRNA‐126‐5p expression Leng, Liu, et al.

(2020)

Enhanced ATAD2 expression

Increased cancer growth and PTX resistance

SNHG22 Ovarian carcinoma Resistance Affected miRNA‐2467/Gal‐1 axis Zhao et al. (2019)

Induced PI3K/Akt signaling

Promoted ERK expression

SNHG5 Ovarian cancer Sensitivity Reduced miRNA‐23a expression via sponging Lin, Shen, et al.
(2020)

Impaired cancer proliferation

Promoted PTX sensitivity

SNHG1 Ovarian cancer Resistance Reduced miRNA‐216b‐5p expression Pei, Zhao, et al.
(2020)

Prevented apoptosis

Enhanced cancer cell viability and metastasis

(Continues)
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MiRNA‐124‐3p impairs cancer progression and increases PTX

sensitivity via downregulation of ZEB1 and P‐gp. The circ‐PVT1

reduced miRNA‐124‐3 via sponging to increase PTX resistance in

gastric cancer cells (Liu, Zhang, et al., 2019). Forkhead box 2 (FOXR2)

is a tumor‐promoting factor in cancer. FOXR2 upregulation signifi-

cantly enhanced cancer metastasis via EMT induction (Lu, Qiu,

et al., 2017). Silencing of FOXR2 suppressed lung cancer progression

by reducing the expression of Wnt (Wang, Cui, et al., 2018). In

ovarian cancer cells, circCELSR1 participated in PTX resistance by

reducing the expression of miRNA‐1252, and increasing the expres-

sion of FOXR2 (Zhang, Cheng, et al., 2020).

Most of the studies have focused on the role of tumor‐promoting

circRNAs in cancer cells exposed to PTX. The circ‐ABCB10 is one such

circRNA that increases cancer growth and viability via downregulation

of miRNA‐1271 (Liang, Zhang, et al., 2017). Overexpression of circ‐

ABCB10 was correlated with worse clinicopathological features and

poor survival (Chen, Ye, et al., 2019). In breast cancer cells, upregulation

of circ‐ABCB10 increased PTX resistance. Circ‐ABCB10 bound to the

miRNA let‐7a‐5p to decrease its expression, leading to the accumulation

of dual‐specificity phosphatase 7 (DUSP7), inhibition of apoptosis, and

PTX resistance (Yang, Gong, et al., 2020). PTX administration can affect

cancer cell biology via modulation of circRNAs. PTX increased the

TABLE 4 (Continued)

LncRNA Cancer type
Effect on paclitaxel
chemotherapy Results References

UCA1 Ovarian cancer Resistance MiRNA‐654‐5p sponging Leng, Liu, et al.
(2020)

SIK2 overexpression

Enhanced cancer progression

Mediated PTX resistance

UCA1 Ovarian cancer Resistance Regulated miRNA‐129/ABCB1 axis Wang, Ye, et al.
(2018)

Silencing of UCA1 enhanced PTX sensitivity

TUG1 Ovarian cancer Resistance Downregulated miRNA‐29b‐3p Gu, Li, et al. (2020)

Induced pro‐survival autophagy

Reduced PTX cytotoxicity

SDHAP1 Ovarian cancer Resistance MiRNA‐4465 downregulation Pei, Zhao, et al.

(2020)
Increased expression of EIF4G2

Reduced apoptosis

PRLB Ovarian cancer Resistance Decreased cell apoptosis Zhao and Hong
(2020)

Reduced miRNA‐150‐5p expression

Enhanced expressions of RSF1

H19 Nasopharyngeal
carcinoma

Resistance Enhanced cancer proliferation and viability Fan, Zhu, et al.
(2020)

Reduced apoptosis

Silencing of H19 increased PTX sensitivity

TCL6 Renal cell carcinoma Sensitivity Downregulation of TCL6 was correlated with poor
prognosis

Chen, Zhuang,
et al. (2020)

Reduced cell viability

Promoted antitumor activity of PTX against cancer
cells

SNHG7 Hypopharyngeal
cancer

Resistance Metformin administration reduced SNHG7
expression

Wu, Tang,
et al. (2019)

Metformin impaired proliferation and sensitized

cells to PTX chemotherapy

PCAT1 Esophageal squamous
cell carcinoma

Resistance Reduced miRNA‐326 expression Huang, Wang,
et al. (2019)

Silencing of PCAT1 induced cell cycle arrest (G2/M

phase), apoptosis, and PTX sensitivity
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expression of the tumor‐suppressor miRNA‐877‐5p, resulting in

YWHAZ downregulation and inhibition of hepatocellular carcinoma

progression (Liu, Guo, et al., 2020). Hsa‐circ‐0028007 increased tumor

growth and lymph node metastasis, and reduced the PTX sensitivity of

nasopharyngeal carcinoma cells (Qiongna, Jiafeng, et al., 2020). Cir-

cRNAs can regulate the expression of Akt as a tumor‐promoting factor.

CircAMOTL1 overexpression was associated with Akt upregulation and

downregulation of pro‐apoptotic factors including Bax and Bak, while

the anti‐apoptotic protein Bcl‐2 was upregulated, leading to PTX

resistance (Ma, Fang, et al., 2019).

The circRNA RNF111 can regulate the expression of miRNAs to

affect cancer progression. In gastric cancer cells, RNF11 showed an

inverse relationship with miRNA‐27b‐3p to increase proliferation,

metastasis, and viability (Wang,Wang, et al., 2020). RNF111 diminished

miRNA‐140‐5p expression to enhance E2F3 expression and increase

PTX resistance in breast cancer cells. The RNF111 axis promoted

invasion, proliferation, and glycolysis in breast cancer cells, leading to

PTX resistance (Zang et al., 2020). Circ‐0011292 has a similar effect to

increase PTX resistance in small cell lung cancer cells, where it

decreased miRNA‐379‐5p expression to increase the expression of

tripartite motif‐containing protein 65 (TRIM65) and promote PTX

resistance. upregulated miRNA‐379‐5p expression was correlated with

TRIM65 downregulation and reversing the tumor‐promoting role of

circ‐0011292 (Guo, Wang, et al., 2020). It can be concluded that

circRNAs mainly regulate the response of cancer cells to PTX

chemotherapy by affecting miRNAs (Qiongna, Jiafeng, et al., 2020).

Further studies can answer the question of whether there is any

feedback loop between circRNAs and miRNAs in PTX chemotherapy,

which is valuable in developing novel therapeutics in the near future.

Cyclin‐dependent kinase 8 (CDK8) is a key member of the CDK

family, which affects biological processes such as angiogenesis, stem

cell self‐renewal, etc. (Lim and Kaldis 2013). CDK8 enhances

progression of cancer cells, and its pharmacological inhibition by

anti‐tumor compounds (such as capsaicin) reduces cancer malignancy

(Spear, Lu, et al., 2020; Xia, Zhao, et al., 2020). Circ‐0006528

upregulated CDK8 expression via inhibition of miRNA‐1299 to

promote PTX resistance in breast cancer cells (Liu, Zhang, et al., 2020).

To date, only this one study has evaluated the regulation of CDK8 by

circRNAs and the effect on PTX chemotherapy, suggesting that

further studies are needed on circRNAs with regulatory effects on

CDK8 (Figure 5 and Table 5).

9 | ncRNAs AS RELIABLE BIOMARKERS

Biomarker is a general term explaining various kinds of objective

indicators of health or disease (Condrat, Thompson, et al., 2020).

With respect to progress in the field of technology, these indicators

have become more precise and reliable. Pulse, looks, and taste of

urine were considered as biomarkers in ancient times. However, the

biomarkers should be reliable in terms of providing diagnosis and

prognosis. In the cancer field, the concept of biomarker is completely

complicated and a biomarker should be reliable enough in predicting

cancer development. Furthermore, the nature of biomarker is

important, so that this biomarker should be obtained in a noninvasive

or minimally invasive way. Therefore, scientists consider miRNAs as

appropriate biomarkers, since their expression level undergoes

deregulation in cancers, and they can also determine response of

cancer cells to chemotherapy (Filipów & Łaczmański, 2019). These

findings also apply to PTX. For instance, miRNA‐30a‐5p can be

considered as a reliable biomarker for patients with lung cancer, since

it has a tumor‐suppressing role, and when its expression undergoes

F IGURE 5 Similar to lncRNAs, circRNAs mainly target miRNAs in affecting response of cancer cells to PTX chemotherapy
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downregulation, it provides a poor response to PTX chemotherapy

(Xu, Jin, et al., 2017). The same phenomenon occurs in cervical

cancer. The miRNA‐125a enhances PTX‐mediated apoptosis in

cervical cancer cells, and if its expression level is low, it predicts

poor response to PTX chemotherapy (Fan, Cui, et al., 2016). Similarly,

lncRNAs can be considered as biomarkers of response to PTX

therapy, and their serum level is of importance (Huang, Wang,

et al., 2019; Liu, Jiang, et al., 2020). It is worth mentioning that these

TABLE 5 Circular RNAs and their role in paclitaxel chemotherapy

CircRNA Cancer type
Effect on paclitaxel
chemotherapy Results References

PVT1 Gastric cancer Resistance Downregulated miRNA‐124‐3p expression
via sponging

Liu, Zhang, et al.
(2019)

Increased ZEB1 expression

Increased cancer malignancy and PTX

resistance

CircCELSR1 Ovarian cancer Resistance Sponging of miRNA‐1252 Zhang, Cheng, et al.

(2020)

Increased FOXR2 expression

Induced PTX resistance

Hsa‐circ‐0000714 Ovarian cancer Resistance Induced RAB17 expression via
miRNA‐370‐3p sponging

Guo, Wang, et al.
(2020)

Promoted proliferation and cell cycle

progression

CircNRIP1 Ovarian cancer Resistance Decreased miRNA‐211‐5p via sponging Wu, Jia, et al. (2020)

Enhanced HOXC8 expression

Circ‐0006528 Breast cancer Resistance Enhanced CDK8 expression via
miRNA‐1299 downregulation

Wu, Zhong, et al.
(2020)

Triggered autophagy, proliferation, and
metastasis

Apoptosis inhibition

RNF111 Breast cancer Resistance MiRNA‐140‐5p downregulation Zang, Li, et al. (2020)

E2F3 overexpression

Enhanced proliferation via glycolysis
induction

Promoted cancer metastasis

ABCB10 Breast cancer Resistance Stimulated DUSP7 expression via
let‐7a‐5p downregulation

Yang, Gong, et al.
(2020)

Enhanced tumor growth and apoptosis
inhibition

BIRC6 Hepatocellular
carcinoma

Resistance Enhanced expression of miRNA‐877‐5p
as a tumor‐suppressing factor via
BIRC6 inhibition

Liu, Guo, et al. (2020)

Reduced cell viability and triggered
apoptosis via YWHAZ inhibition

Hsa‐circ‐0028007 Nasopharyngeal
carcinoma

Resistance Overexpressed in cancer cells and tissues Qiongna, Jiafeng,
et al. (2020)

Mediated cancer metastasis and invasion

Increased PTX resistance

Circ‐0011292 Non‐small cell lung
cancer

Resistance InducedTRIM65 expression via
miRNA‐379‐5p downregulation

Guo, Wang, et al.
(2020)

Increased carcinogenesis and PTX resistance
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studies are related to pre‐clinical, and the next step is translating

these findings to clinic in predicting PTX response of cancer patients

and adopting strategies for improving the efficacy of chemotherapy.

10 | CONCLUSION AND FUTURE
OUTLOOK

In the present review, the role of the three main classes of ncRNAs in

stimulating or inhibiting PTX resistance in cancer chemotherapy was

mechanistically discussed. MiRNAs can be divided into two groups,

including tumor‐suppressor miRNAs and tumor‐promoting miRNAs.

Tumor‐promoting miRNAs enhance the proliferation and migration of

cancer cells and increase PTX resistance. Furthermore, this type of

miRNAs stimulates cell cycle progression. These miRNAs were

summarized in Table 2, and it can be seen that a wide variety of

molecular pathways are involved as their downstream targets. Mad2,

DAPK2, mTOR, STAT3, Akt, PTEN, and ERK are some of the

downstream targets of miRNAs that can trigger PTX resistance. On

the other hand, there are other tumor‐suppressor miRNAs that affect

the expression of different molecular pathways, such as E2F1, Bcl‐2,

Bad, Pak2, Wnt, and Akt. These miRNAs tend to trigger cancer cell

apoptosis and suppress metastasis, resulting in increased PTX

sensitivity. The piRNAs are another kind of short ncRNAs capable

of regulating response of cancer cells to PTX chemotherapy. The

important point is the role of siRNAs and shRNAs in reversing PTX

resistance. It is possible to artificially siRNAs and shRNAs for

targeting specific molecular pathways and enhancing PTX sensitivity

of cancer cells.

The role of lncRNAs in PTX resistance or sensitivity was

examined in depth. MiRNAs are the most well‐known downstream

targets of lncRNAs, which affect the response of cancer cells to PTX

chemotherapy. By targeting miRNAs, lncRNAs can regulate the

expression of molecular pathways, such as EMT, DOCK4, ABCB1,

CDK6, and PBLD, which can then affect PTX resistance or sensitivity.

Noteworthy, miRNAs affect the expression of target genes by

binding to the 3′‐UTR of the mRNA, while lncRNAs generally

influence miRNA expression via sponging.

CircRNAs can also regulate the response of cancer cells to PTX

therapy and similar to lncRNAs, they generally affect miRNAs. Their

downstream targets include ZEB1, FOXR2, HOXC8, CDK8, and

DUSP7, which can undergo upregulation or downregulation. These

complex signaling networks can be taken into consideration to

develop novel therapeutic approaches to improve PTX sensitivity.

Future combination therapy approaches could be investigated to

devise routes to administer PTX at the same time as agents that can

favorably modulate ncRNAs to improve sensitivity. If these agents

are small molecules, then normal pharmacokinetic considerations for

dual drug therapy will apply. However, if these agents are

oligonucleotides, proteins, or other large molecules, it will likely be

necessary to load both the agent and PTX into a nanovehicle that can

be targeted to accumulate at the tumor site. Because PTX itself is a

hydrophobic drug, it will also benefit from the use of a drug‐delivery

vehicle. Furthermore, clinical studies will be required to demonstrate

the value of targeting ncRNAs to enhance the efficacy of PTX as a

cancer chemotherapy drug.
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