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Spain 
e Department of Cellular and Molecular Biology, Biological and Veterinary Sciences Faculty, Nicolaus Copernicus University, Torun, Poland 
f Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran 
g Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA 
h Translational Sciences, Xsphera Biosciences Inc., 6, Tide Street, Boston, MA, 02210, USA 
i Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran 
j Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey 
k ERNAM—Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey   

A R T I C L E  I N F O   

Keywords: 
Liposome 
Doxorubicin 
Cancer therapy 
Chemoresistance 
Co-delivery 

A B S T R A C T   

Cancer is still a major threat to human life that is characterized by abnormal proliferation and metastasis of 
cancer cells. Chemotherapy is procedure of using anti-cancer drugs for preventing dissemination and prolifer
ation of tumor cells to kill them in improving survival rate and prognosis of patients. Chemotherapy has been a 
common conventional therapy for cancer, and it can be used along with surgical resection in cancer patients. 
However, drug resistance has led to chemotherapy failure in patients, especially in advanced and metastatic 
stages. Therefore, nano-scale delivery systems have been developed for reversing drug resistance and potenti
ating efficacy of chemotherapy agents. Liposomes are spherical vesicles with low particle size and high 
biocompatibility that have been used for drug delivery in cancer suppression. Liposomes can increase inter
nalization of doxorubicin (DOX) as an anti-cancer drug in tumor cells to boost its cytotoxicity. Furthermore, co- 
delivery of DOX with other anti-tumor drugs or gene therapy can lead to synergistic cancer therapy. pH-, redox-, 
light- and multi-sensitive liposomes have been designed for precise delivery of DOX in cancer suppression. 
Modification of liposomes with ligands such as hyaluronic acid that binds to CD44 receptor, enhances selectivity 
towards cancer cells. Furthermore, DOX-loaded liposomes mainly internalize in cancer cells via endocytosis that 
is dependent on different factors such as particle size, zeta potential and other physico-chemical properties.   

1. Introduction 

The number of cancer-related deaths in 2020 (10 million) 

demonstrates that cancer is still a major cause of death [1]. The most 
common and malignant cancers have been categorized in both males 
and females, but overall, lung cancer, breast cancer and colorectal 
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cancers are among the most common and malignant tumors in both 
sexes. The currently available treatments for cancer in pre-clinical and 
clinical settings are gene therapy, surgery, hormone therapy, radiation 
therapy and the most common one is chemotherapy [2–5]. In spite of 
significant progresses in discovery of anti-cancer drugs for purpose of 
cancer chemotherapy, cancer recurrence and poor prognosis are 
observed in patients receiving chemotherapy. The cancer cells owing to 
their unique characteristics such as proliferation and metastasis can 
mediate resistance to chemotherapy. Based on estimates, up to 80–90% 
of cancer-related deaths result from drug resistance and strategies 
should be chosen in reversing such condition [6]. Overall, chemo
resistance development can be explored in two cases including intrinsic 
and acquired drug resistance. In intrinsic drug resistance, cancer cells 
demonstrate mutations that can establish their colony and abnormally 
proliferate lacking response to anti-cancer activity of chemotherapeutic 
agents. However, if cancer cells develop resistance upon exposure to 
chemotherapeutic agents, it is called acquired drug resistance [7]. 
Doxorubicin (DOX) is an anti-cancer drug with cancer suppression 
ability via topoisomerase activity inhibition and reactive oxygen species 
(ROS) generation. However, hyperactivity of drug efflux pumps such as 
P-glycoprotein, activation of oncogenic pathways and others have been 
implicated in development of DOX resistance in cancer cells [8]. The 
exact mechanism responsible for DOX resistance in cancer is not been 
determined; however as it was mentioned, a combination of underlying 
mechanisms can lead to drug resistance [9–15]. The lncRNA SAMMSON 
has been implicated in DOX resistance in breast cancer. Silencing 
SAMMSON alleviates DOX resistance and promotes oxidative meta
bolism [16]. Down-regulation of BCKDK is associated with protein 
translation inhibition in breast cancer and enhanced sensitivity to DOX 
chemotherapy [17]. Down-regulation of CXCR4 suppresses 
PI3K/Akt/mTOR axis in triggering autophagic cell death and sensitizing 
osteosarcoma cells to DOX chemotherapy [18]. For reversing DOX 
resistance, several strategies have been taken. One of them is 
co-application of DOX with other anti-cancer agents. For instance, 
resveratrol stimulates apoptosis and increases sensitivity of tumor cells 
to DOX chemotherapy. Lercanidipine and amlodipine as calcium chan
nel inhibitors are capable of suppressing ERK/MAPK and TGF-β path
ways in re-sensitizing gastric tumor cells to DOX chemotherapy [20]. 
Another approach in gene therapy in mediating DOX sensitivity [21,22]. 
Noteworthy, recent studies have focused on application of nanocarriers 
for DOX delivery and increasing its accumulation at cancer cells 
[23–25]. The scope of current review is to understand potential of li
posomes in delivery of DOX in cancer therapy. This article will cover 
how application of liposomes can increase potential of DOX in cancer 
suppression and liposomal nanostructures are beneficial in preventing 
drug resistance. Moreover, it is discussed that liposomes can deliver 
DOX with other anti-tumor drugs and even genes. The surface modifi
cation of liposomes for increasing their selectivity and their application 
in phototherapy for synergistic chemo-/photo-therapy is discussed. 
Moreover, the stimuli-responsive liposomes for site-specific delivery of 
DOX are shown. DOX is commonly used in cancer therapy and 
DOX-loaded liposomal nanostructures can be used for targeted treat
ment of human cancers. 

2. Liposomes: Basics and biomedical application 

Nanotechnology is defined as a field dealing with synthesis of ma
terials at nanoscale and advent of nanotechnology provided a milestone 
progress in drug delivery [26]. The use of nanotechnology allows for 
efficient, precise and specific delivery of drugs to improve their accu
mulation at unreachable physiological destinations. Multiple kinds of 
nanocarriers have been developed with purpose of drug delivery that 
have their own characteristics in terms of size, stability and biocom
patibility. Drug loading and encapsulation efficiency are different 
among nano-scale delivery systems and clinical application of delivery 
systems depends on their safety profile [27]. The closed spherical 

vesicles with a lipid bilayer membrane surrounding an aqueous core are 
known as liposomes [28]. The diameter of liposomes is at length of 400 
nm to 2.5 mm and their particle size can be different with average range 
of 1–100 nm. The unique properties (physical and chemical character
istics) of liposomes have made them appropriate options for purpose of 
drug delivery. Overall, several reasons are followed by using liposomes 
for drug delivery purposes. The first and most important reason is 
increasing targeting ability for enhancing accumulation of favorable 
drugs at desirable site and preventing accumulation in unwanted tissues 
that is of importance for minimizing adverse impacts. The second reason 
can be improving solubility of drugs to accelerate parenteral drug 
administration. Reducing clearance of drugs and providing sustained 
release of drug at desirable site. Furthermore, liposomes can promote 
stability of drugs and facilitate their penetration via barriers such as 
blood-brain barrier and blood-cochlear barrier [29–32]. Therefore, it is 
highly suggested to use liposomes for purpose of drug delivery. The 
liposome discovery was first performed by Alec Bangham approximately 
4 decades ago and after that, their use in various fields, especially 
biomedical application was followed. Although liposomes are recom
mended for purpose of drug delivery, one of their limitations is fast 
limitation that can be overcome using PEGylation. Furthermore, surface 
modification with targeting agents such as antibodies, peptides and 
polymers such as hyaluronic acid can promote targeting ability of li
posomes [33–37]. Fig. 1 provides an overview of liposome structure and 
its biomedical application. 

Recently, liposomes have been employed as ideal nano-scale delivery 
systems for cancer diagnosis and therapy [15,38–41]. The hybrid 
nanovesicles comprised of exosomes and liposomes with thermosensi
tive property have been developed for suppressing CD47 and mediating 
a combination of photothermal therapy and immunotherapy [42]. The 
combination therapy with liposomes is of importance for purpose of 
cancer therapy. Furthermore, liposomes can internalize in tumor cells 
via endocytosis [43]. Owing to long-term circulating feature of lipo
somes, they have been widely used for delivery of anti-cancer drugs. 
Oridonin-loaded liposomes are able to suppress colon cancer prolifera
tion and they have high encapsulation efficiency (85.79%) [44]. The 
targeting efficiency of liposomes can be improved via surface modifi
cation; a strategy that has been followed by a recent experiment via 
modifying liposomes with cRGD to increase their attachment into 
endothelial cells. Furthermore, liposomes can be designed in a way to 
release cargo in response to temperature to suppress tumor proliferation 
[45]. Interestingly, liposomes have been employed for delivery of both 
synthetic molecules and phytochemicals in cancer therapy [46–48]. The 
stimuli-responsive liposomes, especially pH-sensitive liposomes are of 
interest for site-specific release of cargo in cancer suppression [49]. In 
addition to drugs, liposomes can be used for delivery of genetic tools in 
effective cancer therapy [50–57]. The following sections emphasize on 
use of liposomes for DOX delivery in cancer therapy and improving its 
accumulation at tumor site (Table 1). 

3. Liposomes for DOX delivery 

3.1. Co-delivery with drugs 

After the development of drug resistance in procedure of cancer 
therapy, some thoughts have been created to re-sensitize tumor cells. 
Majority of chemotherapeutic agents induce apoptosis, cell cycle arrest 
and DNA damage for purpose of tumor suppression. However, tumor 
cells exert compensatory mechanisms in preventing chemotherapy- 
mediated suppression. For instance, in case of apoptosis, tumor cells 
increase expression level of anti-apoptotic factors such as Bcl-2 to pre
vent apoptosis and mediate drug resistance. In case of cell cycle arrest 
and DNA damage, they activate repair mechanisms. Therefore, chemo
therapeutic agents such as DOX are not always that much effective that 
they appear to be at first point due to intrinsic resistance mechanisms. In 
this case, several underlying solutions can be considered that one of 
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them is co-application of other anti-cancer agents. For instance, if 
apoptosis inhibition or DNA damage repair are responsible for devel
opment of drug resistance, other anti-cancer agents can be used to target 
other pathways in triggering apoptosis and DNA damage (in condition 
that there is no multidrug resistance) to increase sensitivity to chemo
therapy [9,10,83–87]. Various kinds of small molecules and plant 
derived-natural products have been employed for purpose of chemo
sensitivity and they have demonstrated promising results [88–91]. 
However, there is another problem and is poor bioavailability of both 
drugs for synergistic cancer chemotherapy that is due to presence of 
biological barriers [92,93]. This drawback is more obvious in vivo 
compared to in vitro and in animal models, synergistic cancer therapy 
with co-application of two anti-cancer agents shows low efficacy. For 
this purpose, it is highly recommended to develop nanoplatforms for 
co-delivery of drugs and improving their bioavailability and therapeutic 
index [94–98]. The current section focuses on the role of liposomes for 
co-delivery of DOX with other drugs in cancer chemotherapy. 

Schisandrin B (Sch B) is a potent anti-cancer agent for tumor sup
pression and it is a modulator of molecular pathways. Sch B is capable of 
impairing progression of tumor cells and induces apoptosis via PI3K/Akt 
signaling inhibition [99]. Sch B impairs cancer metastasis via EMT in
hibition and it reduces stemness of tumor cells [100]. The interesting 
point is capacity of Sch B in cancer chemotherapy; so that it can increase 

ability of paclitaxel in suppressing proliferation and metastasis of cer
vical cancer cells to boost paclitaxel chemotherapy [101]. In a recent 
experiment, liposomes have been prepared for co-delivery of DOX and 
Sch B to mediate synergistic impact and there has been focus on mo
lecular mechanisms affected in cancer therapy. The co-delivery of DOX 
and Sch B exerts inhibitory impact on metastasis of lung tumor cells. 
This combination delivery by liposomes is beneficial in EMT inhibition 
via down-regulation of vimentin and also, inhibition of VEGF and 
MMP-9 [102]. The combination delivery can be also beneficial in 
affecting viability and proliferation rate of tumor cells. In a recent 
attempt, liposomes were employed for co-delivery of DOX and glucoe
vatromonoside derivative in breast cancer therapy. The prepared 
co-loaded drug liposomes had particle size of 193.9 and 200.4 nm, zeta 
potential of − 2.2 and − 2.4 mV, and high entrapment efficiency. This 
co-delivery of drugs by liposomes led to induction of apoptosis and 
G2/M cell cycle arrest in decreasing progression of breast tumor cells 
[103]. These two studies highlight the fact that both inhibition of pro
liferation and invasion of tumor cells by co-delivery can be advanta
geous in increasing drug sensitivity. 

Long-term and multiple uses of chemotherapy drugs can lead to 
development of drug resistance in cancer due to overexpression of P-gp 
that can also mediate multidrug resistance (MDR) [104]. Increasing 
evidence has focused on application of P-gp inhibitors in cancer 

Fig. 1. Liposome structure and its biomedical application.  
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chemotherapy and suppressing MDR [105]. The most important prob
lem in use of chemotherapy drug and P-gp inhibitor is that they are 
effective in reversing MDR at high concentration levels, therefore 
resulting in adverse impacts in vivo [105]. It is also worth mentioning 
that some cancer types such as breast cancer are not negative for P-gp 
and demonstrate low expression level of P-gp during initial steps of 
chemotherapy [106,107]. Based on these discussions, it is suggested to 
use nanoparticles for co-delivery of DOX and P-gp inhibition in breast 
cancer therapy. In an effort, liposomes with high size uniformity and 
entrapment efficiency were developed for release of DOX and P-gp 

inhibitor in breast cancer therapy. Co-delivery of cyclosporine A (CsA) 
and DOX by liposomes led to a significant reduction in their side impacts 
and by increasing their internalization in cancer cells, a remarkable 
increase was observed in anti-cancer activity and tumor suppression 
[108]. Some of the natural products have demonstrated ability in 
reducing expression and activity of P-gp that is beneficial in reversing 
drug resistance during DOX chemotherapy. Quercetin is a phytochem
ical that can prevent nuclear translocation of YB-1 and decreases P-gp 
expression in reversing MDR [109]. Quercetin prevents signal trans
duction from nucleotide-binding domain to transmembrane domain to 

Table 1 
An overview of liposomes employed for DOX delivery in cancer suppression.  

Nanovehicle Cargo Cancer type Remark Ref 

Chondroitin sulfate-modified liposomes Doxorubicin 
Retinoic 
acid 

Breast cancer Good serum stability [58] 
98.7% encapsulation efficiency 
Anti-metastatic activity 

RSPO-conjugated liposomes Doxorubicin Lung cancer Stimulation of tumor tissue necrosis [59] 
Growth inhibition 

Cetuximab-coated thermosensitive liposomes Doxorubicin Breast cancer High stability and particle size of 120 nm [60] 
High cellular uptake due to modification with cetuximab 
Combination of phototherapy and chemotherapy 

Heat-triggered liposomes Doxorubicin Prostate cancer Preventing off-targeting [61] 
Suppressing tumor growth 

rBC2LCN lectin-modified liposomes Doxorubicin Pancreatic cancer High cytotoxicity and decreasing tumor weight in vivo [62] 
Reducing side effects 

MR-labelled liposomes Doxorubicin Breast cancer Ultrasound-mediated DOX release in breast cancer in mice [63] 
Cell-penetrating peptide-modified pH-sensitive 

liposomes 
Doxorubicin Breast cancer Prolonged blood circulation time [64] 

High selectivity and specificity towards tumor cells 
Increased accumulation of DOX at tumor site 

Phosphatidylcholine-based liposomes Doxorubicin Breast cancer High encapsulation efficiency (more than 80%) [65] 
Drug release over 48 h 
Sustained release and high cytotoxicity on tumor cells 

Magnetic resonance activatable thermosensitive 
liposomes 

Doxorubicin Breast cancer 200 nm in size and 68% drug release [66] 
Decreased viability of tumor cells 
Minimal homolytic potential 

Chlorotoxin peptide-modified liposomes Doxorubicin Glioblastoma Growth inhibition [67] 
100–150 nm particle size 
High entrapment efficiency 

pH-sensitive liposomes Doxorubicin Cervical cancer Delivery of DOX to cancer cells and providing nuclear accumulation [68] 
Apoptosis induction via caspase-3 overexpression 

pH-sensitive liposomes Doxorubicin 
Tariquidar 

Ovarian cancer High stability at pH 7.4 and drug release at acidic pH [69] 
Targeted delivery of drugs to cancer cells 

MT1-MMP-activated liposomes Doxorubicin Pancreatic cancer Increased tumor blood perfusion to enhance accumulation of DOX at 
tumor site 

[70] 

Good distribution of DOX at tumor tissue 
Heat-triggered release of DOX 

Heparin-modified bone-targeting liposomes Doxorubicin Breast cancer Alendronate functions as a bone-targeting agent [71] 
Anti-metastatic ability 

Liposomes Doxorubicin Lung cancer 102–120 nm of particle size [72] 
High drug release of 98% after 45 h 
High cellular uptake due to modification with GE11 protein 

Transferrin- and octaarginine-modified 
liposomes 

Doxorubicin Ovarian cancer High cytoplasmic accumulation of DOX [73] 
Providing nuclear delivery 
Internalization in cancer cells via receptor-mediated endocytosis and 
macropinocytosis 

Live macrophage-delivered liposomes Doxorubicin Breast cancer Increased DOX accumulation at tumor site [74] 
Deeper penetration 
Improving survival rate of mice 

Alpha-tocopheryl succinate-modified liposomes Doxorubicin Breast cancer pH-sensitive release of DOX [75] 
High encapsulation efficiency and biocompatibility 
Promising anti-cancer activity 

Stearylamine-bearing liposomes Doxorubicin Melanoma Inducing anti-tumor immunity and preventing metastasis in animal model [76] 
Magnetic liposomes Doxorubicin Hepatocellular carcinoma Decreasing viability of tumor cells up to 80% [77] 

Anti-proliferation activity 
Temperature-sensitive liposomes Doxorubicin Colon cancer High nuclear localization of DOX [78] 

Induction of pro-inflammatory cytokine storm 
Triggering M1 polarization of macrophages 

Temperature-sensitive liposomes Doxorubicin Prostate and colorectal 
cancers 

High uptake and release of DOX in tumor cells [79] 
Sustained release 
Enhanced anti-cancer activity 

Thermosensitive liposomes Doxorubicin Ovarian cancer High drug release and cytotoxicity on tumor cells [80] 
Polyelectrolyte/Gold nanoparticles 

incorporating liposomes 
Doxorubicin Cervical cancer Release of DOX lacking changes in structure of liposome or tubule and 

cytotoxicity on cancer cells 
[81] 

Liposomes Doxorubicin Colon cancer Great anti-proliferative activity [82] 
Simvastatin  
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avoid activity of P-gp [110]. In an experiment, PEGylated liposomes 
were prepared for co-delivery of DOX and quercetin as P-gp modulator. 
This combination delivery diminished tumor growth and volume and it 
caused high decrease in proliferation rate of cancer cells. This strategy is 
beneficial in suppressing drug resistance [111]. 

Curcumin is another anti-cancer agent that its combination with 
resveratrol can suppress PI3K signaling in preventing drug resistance 
[112,113]. Different kinds of nanostructures have been developed for 
delivery of curcumin and DOX in cancer therapy. MnO2-shelled 
DOX/curcumin-loaded nanoformulations can induce anti-tumor immu
nity and suppress carcinogenesis in colorectal cancer therapy [114]. For 
reversing MDR in esophageal cancer, PEGylated cancer cell 
membrane-coated nanostructures have been employed for co-delivery of 
curcumin and DOX with capacity of impairing tumor growth [115]. 
Tuftsin-bearing liposomes have been synthesized for encapsulation of 
DOX and curcumin in cervical cancer suppression. This combination and 
delivery by liposomes can result in significant reduction in growth and 
volume of tumor in vitro and in vivo. The histopathological analysis 
revealed capacity of this combination in cancer therapy lacking side 
effects on other organs of body [116]. One of the ways for improving 
blood circulation time of liposomes is to provide their PEGylation. 
PEGylated liposomes are favored for co-delivery of curcumin and DOX 
in colon cancer therapy. DOX and curcumin delivery by PEGylated li
posomes suppressed tumor progression in vivo and they suppressed 
angiogenesis and migration of colon cancer cells. Furthermore, 
drug-loaded PEGylated liposomes induced apoptosis and prevented 
resistance to cell death [117]. Two important factors result in increased 
anti-cancer activity of DOX and curcumin upon delivery by liposomes 
including long circulation in blood and increased internalization in 
cancer cells [118]. Based on these studies, liposomes are able to effec
tively deliver DOX along with other anti-cancer agents for increasing 
cytotoxicity and appropriate tumor suppression (Fig. 2) [118–127]. 
Table 2 provides a summary of co-delivery of DOX with anti-cancer 
drugs by liposomes in cancer therapy. 

3.2. Co-delivery with genes 

Three major arms for treatment of cancer include surgery, chemo
therapy and radiotherapy. The most traditional strategy in cancer 

treatment is surgical resection and it is used for eliminating primary or 
secondary metastatic cancers. Robotic and laparoscopic technologies 
have been employed for improving morbidity and mortality after sur
gery. However, tumor recurrence and relapse can commonly occurs 
after surgery [144,145]. Irradiation is another approach in treatment of 
cancer that involves inducing DNA damage in tumor cells and upon 
application of high doses, it can cause cell death and inhibits tumor 
growth. However, it can lead to some unexpected and undesirable 
adverse impacts [3,146,147]. Due to aforementioned drawbacks, 
chemotherapy has been used in cancer treatment, although it has faced 
drug resistance and side effects that can be improved using nanocarriers. 
Gene therapy is a new emerging approach in cancer therapy that in
cludes insertion of exogenous nucleic acids into target cells for thera
peutic purposes [148]. Gene therapy has also its own problems such as 
degradation in blood circulation, low accumulation at tumor site and 
off-targeting feature [86,149,150]. The current section focuses on the 
use of liposomes for co-delivery of liposomes and genetic tools in cancer 
chemotherapy. 

microRNAs (miRNAs) are one of the most well-known regulators of 
molecular pathways in cells and they are produced primarily in nucleus 
and then with help of exportin-5, they are transferred into cytoplasm to 
be embedded in RISC complex, leading to generation of a mature and 
functional miRNA that can reduce expression of target gene via binding 
to 3/-UTR and preventing mRNA translation [151]. Dysregulation of 
miRNAs can cause significant alterations in biological mechanisms in 
cells and is associated with cancer initiation and development [152]. 
miRNAs can be considered as promising target in cancer chemotherapy 
and reversing drug resistance [153–156]. In an effort, liposomes have 
been used for co-delivery of miR-375 and DOX in HCC suppression. This 
nanoplatform provides co-delivery of gene and DOX in HCC suppression 
that follows two important results including preventing drug resistance 
and increasing cytotoxicity. miR-375 released from liposomes can 
induce apoptosis and cell cycle arrest at G2/M phase that subsequently, 
increases DOX sensitivity of HCC cells [157]. Therefore, it is highly 
suggested to deliver tumor-suppressor miRNAs for improving DOX’s 
cytotoxicity on tumor cells. It has been reported that co-delivery of 
miR-101 and DOX is beneficial in HCC suppression, as miR-101 di
minishes growth and metastasis of HCC cells and then, cytotoxicity of 
DOX against tumor cells increases [158]. 

Fig. 2. Liposomes in co-drug delivery.  
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STAB1 is one of the targets in cancer therapy and its down-regulation 
by miR-1224 suppresses gastric cancer progression [159]. SATB1 can be 
used as a biomarker and its overexpression provides unfavorable prog
nosis in colon cancer [160]. In an experiment, co-delivery of DOX with 
SATB1-shRNA has been performed to impair gastric cancer progression. 
The thermosensitive magnetic liposomes increase DOX and DOX inter
nalization that is of importance in suppressing gastric cancer progres
sion in vitro and in vivo [161]. This study revealed that liposomes can be 
employed for delivery of shRNA as a promising genetic tool in increasing 
DOX’s cytotoxicity against cancer cells. Similar to shRNA, small inter
fering RNA (siRNA) is beneficial in cancer therapy and it is widely used 
for purpose of cancer proliferation and invasion suppression. Further
more, siRNA use can avoid drug resistance that is an increasing chal
lenge in recent years. The reason of using nanocarriers for siRNA 
delivery is that tumor cells and tissues can create barrier known as 
blood-tumor barrier that prevents accumulation at tumor site. Further
more, cell membrane has a negative charge and it is a little hard for 
siRNA with negative charge to appropriately penetrate through cell 
membrane. Besides, there are enzymes in bloodstream called RNase 
enzymes that can degrade siRNA and decrease its potential in cancer 
therapy [86,162–167]. In respect to potential of liposomes in drug and 
gene delivery, Yang and colleagues have developed liposomal nano
carriers for co-delivery of Bmi-1-siRNA and DOX in cancer therapy. 
Tumor growth undergoes inhibition by this co-delivery and it is bene
ficial in impairing tumor progression as well as increasing cytotoxicity of 
DOX against cancer cells [168]. Based on these studies, liposomes are 
ideal candidates in gene delivery and enhancing DOX sensitivity of 
tumor cells. However, number of experiments about gene delivery is 
lower compared to drug delivery, urging more studies in this field. 
Furthermore, it is suggested to use liposomes for delivery of DOX, with 
genes and drugs (triple delivery) to understand how this kind of delivery 
is beneficial in impairing tumor progression, especially in vivo (Fig. 3). 

4. Surface modification 

It is quite obvious that use of liposomes can promote internalization 
of DOX in cancer cells. This leads to two important results including A) 
enhanced cytotoxicity of anti-cancer drugs, and B) preventing drug 
resistance. The conventional liposomes can increase blood circulation 
time of DOX and improve its bioavailability. All of these benefits have 
resulted in special attention towards use of liposomes for purpose of 
cancer therapy and DOX delivery. However, it has been reported that 
conventional and unmodified liposomes can undergo some changes to 
increase their targatibility that is of importance in cancer suppression. 
For this purpose, biologists have worked on recognition of receptors 

Table 2 
Liposomal nanocarriers for co-delivery of drugs in cancer therapy.  

Drugs Zeta potential 
(mV) 
Particle size 
(nm) 
Encapsulation 
efficiency (%) 

Remarks Refs 

Doxorubicin 118.1 nm up to 
95% 

Increased cytotoxicity of 
anti-tumor drugs against 
prostate cancer 

[128] 
Verapamil 

Gemcitabine 
Doxorubicin 

Up to 75.5 nm 
− 26.3 mV 

Embedding anti-cancer 
agent in lipid bilayer of 
liposomes 

[129] 

Intravenous administration 
of liposomes 
Suppressing tumor growth 
Exerting long-term immune 
response 

Doxorubicin 130 nm Herceptin conjugation of 
liposomes for increasing 
their selectivity towards 
cancer cells 

[130] 

Simvastatin Up to 80% Inhibiting prostate cancer 
progression in vitro and in 
vivo   
Decreasing tumor growth 
up to 80% 

Paclitaxel 
Doxorubicin 

112.4 and 128.5 
nm 

Increased blood circulation 
time and internalization in 
cancer cells 

[131] 

− 21 mV High anti-cancer activity 
Up to 98% Decreasing toxicity on 

organs and improving 
biocompatibility 

Doxorubicin Up to 122 nm Disulfiram prevents P-gp 
activity and mediates its 
degradation to increase 
internalization of DOX 

[132] 

Disulfiram − 7.9, − 8.6 and 
− 8.9 mV 

Suppressing tumor 
progression synergistically 

Doxorubicin 
Biochanin A 

125 nm Reversing drug resistance 
and impairing tumor 
progression 

[133] 
− 19.5 mV 
70% 

Doxorubicin 
Dihydroaretmisinin 

158.8 nm Decreasing IC50 value [134] 
− 15.8 mV Tumor inhibition up to 

88.59% 
Up to 95% Preferential nuclear 

accumulation of anti-cancer 
agents 

Paclitaxel 244.4 nm Long circulation in 
bloodstream 

[135] 

Doxorubicin 74.1 and 89.6% High cytotoxicity and 
suppressing tumor 
progression 

Doxorubicin 
Astragaloside IV 

109 and 130.7 
nm 

Modification with folate 
ligand and octa-arginine 
polypeptide in increasing 
selectivity of liposomes 
towards breast tumor cells 

[136] 

− 15.9 and 
− 16.2 mV 

Inhibiting cancer 
proliferation 

Up to 98% Reversing drug resistance 
Doxorubicin 

Irinotecan 
– No adverse effect [137] 

Positive impact on relapsed 
or refractory pediatric WT 

Doxorubicin 
chloroquine 

132 nm Cytotoxicity on drug 
resistant-breast cancer cells 

[138] 
More than 90% 

Doxorubicin 
Paclitaxel 

262 nm High tumor suppression [139] 
− 6.2 mV Improved biocompatibility 

Doxorubicin 
Curcumin 

170 nm Inhibition of angiogenesis 
and invasion 

[117] 

− 50 mV Apoptosis induction 
Up to 90% Increased cytotoxicity on 

colon cancer cells 
Doxorubicin 

Itraconazol 
133.3 and 146.4 
nm 

Suppressing tumor growth [140]  

Table 2 (continued ) 

Drugs Zeta potential 
(mV) 
Particle size 
(nm) 
Encapsulation 
efficiency (%) 

Remarks Refs 

− 2.5 and − 2.7 
mV 

Increasing drug 
accumulation  
Decreasing tumor weight 
and volume 

Doxorubicin 
Curcumin 

161, 180 and 
182 nm 

Inhibition of inflammation 
and angiogenesis 

[141] 

Up to − 42 mV Down-regulation of NF-kB 
Up to 87% Colon cancer suppression 

Doxorubicin 120 nm Increased tumor 
distribution 

[142] 

Irinotecan − 15 mV High anti-tumor activity in 
vivo 

Doxorubicin 190–230 nm Suppressing tumor growth 
and increased accumulation 
at tumor site 

[143] 
Curcumin 2–4 mV  
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overexpressing on the surface of cancer cells. Then, a corresponding 
ligand can be attached to surface of liposomes to enhance their targeting 
efficiency [169–171]. Transferrin (Tf) is an important agent for purpose 
of drug delivery, as it can mediate endocytic uptake of nanoparticles by 
transferrin receptor (TfR) [172]. The overexpression of TfR has been in a 
number of tissues in body, especially those that demonstrate high 
turnover rate of cells. In tumor cells, there is a positive association be
tween expression level of TfR and proliferation rate [173]. Owing to 
overexpression of TfR on cancer cells, it is used for purpose of cancer 
therapy and a number of small molecules targeting TfR have been 
developed [174,175]. Tf-modified liposomes have been designed for 
DOX delivery. Film dispersion and ammonium sulfate gradient method 
were used for preparation of liposomes and then, Tf was conjugated to 
surface of liposomes via amide bound with DSPE-PEG(2000)-COOH. 
The Tf modification increases internalization of DOX in HepG2 cells 
and it improves tissue distribution in animal model. Tf-modified lipo
somes effectively delivered DOX to tumor site and reduced DOX con
centration in organs of body such as heart and kidney [176]. Dual 
modification can also be performed in increasing selectivity and speci
ficity of liposomes in drug delivery. Folate receptors (FRs) are one of the 
proteins that their function in cells, has been studied with details due to 
specific role of folic acid in DNA synthesis and supporting growth rate of 
cancer cells. Normal tissues demonstrate low expression level of FR, 
while expression level of this receptor significantly increases in tumor 
cells to internalize folate for cancer proliferation [177–179]. The 
modification of nanoparticles with folic acid has been of importance in 
providing targeted drug delivery [180]. In an effort, dual modification of 
liposomes with Tf and folic acid has been performed. Dual modification 

of PEGylated liposomes with Tf and folic acid resulted in 7-fold 
enhancement in cellular association of nanostructures. Compared to 
non-targeted nanoparticles, dual-modified DOX-loaded liposomes 
demonstrated higher cytotoxicity and they suppressed tumor growth in 
vivo up to 79% [181]. Furthermore, it is possible to develop derivatives 
of these ligands to increase their specificity. For instance, an experiment 
has developed a folate derivative, known as folate-polyethylene glyco
l-cholesterol hemisuccinate (F-PEG-CHEMS) for modification of 
DOX-loaded liposomes. The liposomes had particle size of 120 nm with 
high colloidal stability, and were synthesized using polycarbonate 
membrane extrusion. The KB cells overexpressing FR demonstrated high 
interaction with liposomes and nanostructures easily internalized in 
tumor cells. They showed high circulation time, showing they are 
promising factor for DOX delivery in cancer suppression [182]. 

TAT peptide has been used for translocating cell membranes and 
increasing intracellular delivery of cargoes [183–185]. Due to positive 
charge of TAT peptide, it can be easily internalized in cancer cells [184, 
186,187]. However, non-specificity is one of the drawbacks of TAT 
peptide, limiting its application in drug delivery [188]. Therefore, 
cleavable and non-cleavable PEGs are used to shield it [189–191]. In an 
effort, folate and TAT co-modified liposomes were constructed using pH 
gradient method and post-insertion method. The particle size of nano
particles was up to 148 nm, zeta potential of − 11.7 mV and entrapment 
efficiency of 92.8%. The TAT peptide with cationic charge was fully 
shielded in liposomes. The DOX-loaded dual-modified liposomes were 
internalized in cancer cells and suppressed tumor progression. 
Furthermore, they demonstrated high accumulation rate at tumor tissue 
in vivo [192]. Due to easy surface modification of liposomes, various 

Fig. 3. Liposomes in delivery of genes and DOX.  
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studies have focused on attaching ligands on the surface of liposomes for 
targeted drug delivery. Neurophilin-1 (NRP-1) undergoes upregulation 
in glioblastoma cells and tumor endothelium [193]. NRP-1 is involved in 
oncogenic functions in cells such as angiogenesis, invasion and vascular 
permeability [193,194]. The expression level of NRP-1 enhances in 
positive association with glioblastoma malignancy. Therefore, it is of 
importance to develop peptides targeting NRP-1. RGERPPR is a specific 
peptide designed for targeting NRP-1 and it can also penetration into 
tumor vessels and stroma [195–198]. The peptide-modified liposomes 
have been used for DOX delivery in glioblastoma suppression. The 
RGERPPR peptide-functionalized liposomes demonstrated particle size 
of 90 nm with narrow size distributions. They enhanced internalization 
in tumor cells and improved survival rate of mice in vivo [199]. These 
studies highlight the fact that liposomal nanocarriers are ideal candi
dates in DOX delivery and cancer suppression. However, there is another 
way to increase their specificity towards tumor cells. The most effective 
way is performing surface modification and the first step is under
standing which receptors show overexpression in cancer cells. Then, 
corresponding ligands can be conjugated to surface of liposomes in 
attachment to receptors overexpressed on surface of cancer cells and 
increasing cellular uptake (Table 3 and Fig. 4) [200–206]. 

5. Phototherapy combination 

One of the new emerging strategies for cancer treatment is photo
therapy that is divided into two categories including photodynamic 
therapy (PDT) and phototherapy therapy (PTT). The aim of photo
therapy is to induce cell death in cancer cells either by increasing ROS 
generation or triggering hyperthermia. The nanotechnology-based 
phototherapy can be used for tumor ablation and in recent years due 

to development of drug resistance, a number of researchers have focused 
on combination of phototherapy and chemotherapy in cancer suppres
sion [221–224]. Different kinds of nanostructures have been used for 
phototherapy of cancer. Triphenylamine-perylene diimide 
conjugate-based organic nanostructures have been employed to provide 
photothermal conversion upon exposure to NIR irradiation and by 
increasing ROS generation, they mediate tumor ablation [225]. For 
developing nanostructures for purpose of phototherapy, a special 
attention should be directed towards biocompatibility [226]. Notably, 
always NIR irradiation is not necessary for phototherapy. It has been 
reported that hyperthermia can mediate release of IR780 from virus-like 
particles to mediate cancer phototherapy [227]. The development of 
nanostructures for purpose of phototherapy depends on use a photo
sensitizer in nanoparticles that can be activated upon irradiation, lead
ing to PDT or PTT for purpose of tumor ablation [228–231]. The current 
section focuses on the role of liposomes for purpose of phototherapy and 
increasing potential of DOX in cancer suppression. 

In an experiment, thermosensitive liposomes were decorated with 
graphene oxide (GO) for purpose of photo-chemotherapy. The attach
ment of GO to surface of cationic DOX-loaded liposomes was performed 
via conjugation to poly (L-lysine). The resulting nanocarriers demon
strated particle size of 267.9 nm, zeta potential of +43.9 mV and 
encapsulation efficiency of 86.4%. The structure of GO attached to 
liposome surface was layer-by-layer allowing gel-to-liquid phase tran
sition in response to NIR laser irradiation. These nanostructures can 
mediate both phototherapy and chemotherapy in ablating breast tumor 
cells [232]. In previous sections, it was discussed that use of P-gp in
hibitors can significantly increase potential of DOX in cancer suppres
sion. Notably, combination of DOX, P-gp inhibitor and PDT can exert 
synergistic cancer suppression. A recent experiment has developed 

Table 3 
The surface modified liposomes for targeted delivery of DOX.  

Cargo Ligand and surface modification Cancer type Remark Ref 

Doxorubicin Anti-MUC1/CD44 dual-aptamer Breast cancer Increased cellular uptake [207] 
Cytotoxicity on cancer stem cells 
Inhibiting metastasis in nude mice 

Doxorubicin epigallocatechin-3-O-gallate (EGCG) and 
polyethyleneglycol (PEG) modification 

Myeloma Upregulation of caspase-3 and -8 to induce apoptosis [208] 
Melanoma 
Leukemia 

Doxorubicin Sigma-2 Prostate cancer Modification of liposomes increased their internalization in DU-145 cells [209] 
Doxorubicin Lactoferrin Hepatocellular 

carcinoma 
100 nm in particle size and encapsulation efficiency of 97% [210] 
High cellular uptake and cytotoxicity 

Doxorubicin EGFR Breast cancer Attachment to cancer cells overexpressing EGFR receptor [211] 
High stability in serum 
Cargo release upon hyperthermia 
High cytotoxicity on cancer cells 

Doxorubicin Anti-MT1-MMP antibody Fibrosarcoma Increase in cellular uptake and administration to mice resulted in tumor 
growth inhibition 

[212] 

Doxorubicin TAT peptide and transferrin Glioma Targeting endothelial and tumor monolayer cells [213] 
High tumor distribution 
Increased survival time of xenografts 

Doxorubicin NGR ligand Breast cancer 90 nm in particle size and zeta potential of 95% [214] 
Specific targeting of tumor cells and enhanced internalization in cancer cells 

Doxorubicin TAT peptide and angiopep-2 Glioma Penetrating from cell membrane via an unsaturated pathway [215] 
Crossing over BBB 
High stability and cellular uptake 

Doxorubicin D-mannose and L-fructose Sarcoma Modification of PEGylated liposomes increase tumor tissue distribution of 
DOX and mediate exhaustion of tumor-associated macrophages 

[216] 

Paclitaxel 
Doxorubicin 

Transferrin and TAT peptide Melanoma Apoptosis induction [217] 
Increased cytotoxicity against cancer cells 
Co-encapsulation of paclitaxel and DOX 

Doxorubicin AG73 peptide Colon cancer Good biodistribution and high cytotoxicity [218] 
Doxorubicin PHSCNK Breast cancer 100 nm particle size [219] 

Negative charge 
High cytotoxicity and cellular uptake 

Doxorubicin 
Paclitaxel 

TAT peptide and transferrin Glioma More efficiently in tumor suppression in combination therapy compared to 
monotherapy 

[220] 

Increased cellular uptake 
Passing through endothelial monolayer and penetration into deep parts of 
tumor spheroids  
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PEGylated liposomes for purpose of delivery of DOX, quinine as P-gp 
inhibitor and indocyanine green (ICG) for PDT. The liposomes were 
remotely co-loaded with DOX and quinine, and ICG was adsorbed to 
nanocarriers. Co-delivery of DOX and quinine by liposomes led to 
effective suppression of tumor growth. Notably, addition of PDT to this 
co-delivery boosted anti-cancer activity [233]. The phototherapy can be 
exploited in a way to increase nuclear accumulation of DOX and provide 
synergistic treatment. A good example of such technique is to add or 
dope protoporphyrin IX (PpIX) into lipid bilayer of liposomes. When 
DOX-loaded liposomes reach cancer cells, due to presence of PpIX, they 
demonstrate high affinity for merging with membrane and increasing 
cellular uptake of DOX. Upon mild laser irradiation, the activity of drug 
efflux transporters such as P-gp is impaired and they mediate nuclear 
delivery of DOX that is of importance in effective suppression of lung 
cancer [234]. 

Recently, magnetic nanostructures have been commonly used due to 
their potential for imaging, diagnosis and treatment [235–237]. Mag
netic nanostructures are future and appropriate materials for hyper
thermia and imaging. The exposure of magnetic nanostructure to 
magnetic field results in heat production [238,239]. In an experiment, 
photosensitive magnetic liposomes have been designed for DOX delivery 
in cancer suppression. The m-THPC as photosensitizer and DOX as 
anti-cancer drug have been loaded in hydrophobic bilayer of liposomes 
and resulting magnetic nanocarriers demonstrated particle size of 10, 22 
and 30 nm, while liposomes had particle size of 40, 70 and 110 nm. The 
superparamagnetic nanostructures were loaded in core of liposomes and 

their heating efficiency synergized with DOX in cancer suppression 
[240]. Although chemotherapy or PDT alone is beneficial in cancer 
ablation, it has been reported their combination exerts synergistic 
impact and using liposomes enables increased accumulation at tumor 
site [241]. In respect to increased efficacy in killing tumor cells upon 
combination of chemotherapy and phototherapy [242–244], the chance 
of tumor recurrence due to presence of cancer cell population available 
after therapy decreases. Therefore, it is highly suggested to use nano
particles for combination of chemo (DOX)-phototherapy (Fig. 5) 
[245–247]. 

6. Stimuli-responsive carriers 

6.1. pH-sensitive 

Recently, much attention has been directed towards using multi
functional and stimuli-responsive nanocarriers for DOX [248–252]. 
Tumor microenvironment (TME) has been composed of extracellular 
matrix and stromal cells such as fibroblasts, immune-inflammatory cells, 
and endothelial cells that are associated with tumor progression and 
metastasis upon interacting with cancer cells [253,254]. The biological 
properties of TME are determined via different factors including tissue 
acidosis, hypoxia, proteases, immune reactions and abnormal vessel 
structures, among others [255–257]. The metabolic plasticity of tumor 
cells is vital for reshaping TME that is vital for their adaptation to oxygen 
and nutrient supply [258]. TME is different from normal tissue and has 

Fig. 4. Surface-modified liposomes in DOX delivery.  
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lower pH. In recent years, low pH level of TME has been considered as a 
promising factor for effective drug delivery in cancer suppression [259]. 
pH-sensitive liposomes can be used for stimulation of anti-tumor im
munity [260]. Besides, co-delivery of curcumin and gemcitabine via 
pH-sensitive liposomes has been beneficial in promoting drug internal
ization in cancer cells and impairing tumor progression [261]. This 
section focuses on the role of pH-sensitive liposomes for DOX delivery. 

In a recent experiment, pH-sensitive liposomes were developed for 
delivery of DOX in glioma treatment. Glucose and triphenylphospho
nium (TPP) were as targeting agents for preparation of liposomes to 
appropriately deliver DOX and lonidamine as chemotherapeutic sensi
tizer in glioma suppression. The pH-sensitive liposomes can penetrate 
into blood-brain barrier (BBB) and reach cancer cells. These pH-sensitive 
liposomes are beneficial in improving pharmacokinetic features and 
increasing ability in tumor recognition. Besides, cargo-loaded pH-sen
sitive liposomes can induce apoptosis and significantly suppress growth 
and metastasis of glioma, while they reduce adverse impacts on normal 
tissues. Furthermore, pH-sensitive liposomes suppress lung metastasis in 
animal models and improve their survival time [262]. In recent years, 
nucleolin has been considered as a promising target for therapeutic 
approaches [263,264]. This nucleolar protein exerts various biological 
functions in cells including regulating metabolism, cell cycle progres
sion, nucleolus structure and microtubule nucleation [265–267]. The 
overexpression of nucleolin has been shown in different cancers and it is 
responsible for unfavorable prognosis [268–272]. Nucleolin can in
crease progression of cancer cells via triggering metastasis and angio
genesis [273]. An interesting experiment has evaluated expression level 
of nuceolin in cancer cells and its impact on the internalization of li
posomes. This experiment revealed that F3-peptide-targeted liposomes 
can deliver DOX to cancer cells and expression level of nucleolin in 
tumor cells is not a restriction factor. In order to use nucleolin in future 
studies for development of targeted nano-scale delivery systems, a spe
cial attention should be directed towards structural nucleolin homology 
(higher than 84%) among species [274]. 

Although liposomes have been promising carriers for DOX in cancer 

therapy, there are some restrictions that should be considered by 
studies. One of the limitations of liposomes their uptake by mononuclear 
phagocyte system [258] and another one is difficulty in predicting 
liposome extravasation. Stability and circulation time in bloodstream 
are other drawbacks of liposomes that should be considered. One of the 
most common and well-known ways to improve liposome characteristics 
such as improving bloodstream circulation, stability and decreasing 
uptake by MPS is to perform PEGylation [275–279]. An interesting 
study has evaluated impact of PEGylation on anti-tumor activity of 
pH-sensitive DOX-loaded liposomes. In this experiment, two different 
kinds of liposomes including PEGylated and non-PEGylated were pre
pared. Based on TEM images, no different was observed in morphology 
or size of liposomes. Both kinds of liposomes had diameter of 140 nm 
and zeta potential close to neutrality, and their entrapment efficiency 
was higher than 90%. Interestingly, non-PEGylated DOX-loaded 
pH-sensitive liposomes had higher internalization in cancer cells 
compared to PEGylated liposomes, showing that PEGylation diminishes 
accumulation of nanoparticles at tumor site. In animal models (in vivo), 
non-PEGylated liposomes caused more decrease in tumor growth, up to 
60% that was higher compared to PEGylated liposomes. Therefore, it is 
recommended to do not PEGylate DOX-loaded pH-sensitive liposomes 
for purpose of cancer therapy [280]. The benefit of using pH-sensitive 
liposomes is that they can release DOX at pH similar to TME that is 
6.5 compared to normal and physiological pH that is 7.4 [281]. 

6.2. Redox-responsive 

Another feature of TME is glutathione level that has been also 
exploited in development of nano-scale delivery systems. Aerobic cells 
generate reactive oxygen species (ROS) that is beneficial for vital 
pathway and mechanisms responsible for cell survival. The levels of 
antioxidants in cancer cells is higher compared to ROS and if ROS pro
duction increases, it can cause cell death [282–284]. A recent experi
ment has developed redox-sensitive liposomes containing DOX and 
salinomycin (Sal) for treatment of liver cancer. Two types of CD133-and 

Fig. 5. Liposomes in combination of chemotherapy and phototherapy.  
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EpCAM-targeted peptides were used to design Y-shaped CEP ligands that 
were attached to surface of liposomes. These liposomes selectively tar
geted liver cancer stem cells. The liposomes underwent endocytosis to 
enter into cytoplasm of liver cancer cells and high concentration level of 
glutathione (GSH) led to release of cargo due to breaking disulfide 
bonds. Then, release of DOX and Sal occurs to suppress tumor prolifer
ation [285]. In another experiment, redox-responsive liposomes were 
modified with glucose and triphenylphosphonium (TPP) and then, 
loaded with DOX and lonidamine (LND). These two anti-cancer agents 
exert synergistic impact in cancer suppression. These liposomes increase 
internalization of drugs at tumor cells and provide their mitochondrial 
uptake. They provide lysosomal escape and suppress growth rate of 
cancer cells, while triggering apoptosis. The redox-sensitive liposomes 
increased ROS generation and decreased ATP generation to mediate 
mitochondrial dysfunction in favor of cancer suppression [286]. Note
worthy, GSH levels are higher in cells compared to extracellular matrix, 
and cancer cells have higher levels of GSH compared to normal cells 
[287–290]. Redox-sensitive liposomes are promising factors for purpose 
of cancer therapy and suppressing progression of various cancers. The 
redox-sensitive DOX-loaded liposomes had particle size of − 26.07 mV 
and they increased internalization of drugs at tumor cells that are 
beneficial in cancer therapy. These nanocarriers suppressed tumor 
growth in vivo and increased survival of animal models. They released 
cargo in response to redox status and their modification with hyaluronic 
acid was performed to increase their selectivity towards osteosarcoma 
cells overexpressing CD44 [291]. 

6.3. Light- and thermo-responsive 

Although previous sections have focused on the pH and ROS as 
factors to develop multifunctional liposomes for purpose of DOX de
livery in cancer suppression, there is another kind of smart liposomes 
that more control is placed on them and are known as light-responsive 
liposomes that are based on exogenous stimuli. During development of 
liposomes for DOX delivery, it should be noted that use of cholesterol 
and PEGylation are vital for DOX loading, but they lead to slowed light- 
triggered release of drug. It has been shown that presence of DOX in 
liposomes can increase its bloodstream circulation and stability. The 
liposomes were injected into animal models via intravenous route and 
upon near infrared irradiation (NIR), a significant increase in DOX 
release, up to 7-fold increase in DOX concentration was observed [292]. 
In order to create photoactivable liposomes, it is necessary to load 
photosensitizers in liposomes [293]. Furthermore, light-responsive li
posomes not only release DOX in response to exogenous stimulus, but 
also are beneficial in providing photo-chemotherapy [294] that was 
discussed in previous section. Porphyrin-phospholipid (PoP) is 
commonly used for generation of self-assembled nanoparticles and are 
promising for precise cargo release and theranostic purposes [292, 
295–300]. It has been reported that introduction of low amount of Pop 
such as 2 mol% to prepared liposomes does not affect their blood cir
culation time and can enhance phototherapeutic potential because of 
light-mediated drug release and vasculature permeabilization [292]. 
Since liposomes have demonstrated good potential in improving 
vascular permeabilization in DOX-mediated chemotherapy [301], more 
studies related to light-responsive liposomes for this purpose should be 
peformed. Light-responsive liposomes with small amounts of unsatu
rated and PoPs have been used for DOX delivery. In physiological con
ditions, liposomes demonstrate high stability lacking cargo release, but 
exposure to light leads to drug release at a minute. With low concen
tration levels of PoP, rapid laser-mediated drug release occurs. 
Furthermore, NIR irradiation results in oxidation of DOPC and choles
terol to mediate drug release. Addition of scavenger or antioxidant re
sults in lack of cargo release at the presence of light, showing that 
oxidation of lipids is necessary for DOX release under irradiation. In vivo 
experiment on xenograft mice demonstrated that DOX-loaded liposomes 
can suppress tumor growth efficiently [302]. 

6.4. Multi-responsive 

For more precise delivery of DOX by liposomes in cancer therapy, 
multi-responsive liposomes have been developed. In a recent effort, li
posomes that are sensitive to both redox and light have been designed 
for DOX delivery. Compared to conventional liposomes, these nano
formulations demonstrated higher biocompatibility on normal cells and 
in another hand, they had higher cytotoxicity on cancer cells. They were 
internalized in cancer cells via endocytosis and upon irradiation, high 
amount of ROS was produced that suppressed tumor growth up to 
93.5%. Upon vein injection of DOX-loaded multifunctional liposomes, 
they preferentially accumulated at tumor site and reached to tumor site 
upon 24 h. Upon irradiation and drug release, tumor growth inhibition 
occurred by 94.9% [303]. In another experiment, pH-temperature dual 
sensitive liposomes were developed for DOX delivery. It is obvious that 
TME has lower pH compared to normal tissue, and rapid metabolism of 
cancer cells can result in hyperthermia that is of importance for devel
opment pH- and temperature-sensitive liposomes. The prepared lipo
somes were stabilized by cholesterol and DPPC and then, were 
conjugated to NH2-PEGylated gold nanoparticles. The final nano
structures demonstrated particle size of 415–650 nm and zeta potential 
of − 23 mV that is attributed to phosphate groups of DG-CDP. The 
nanoparticles showed encapsulation efficiency of 78% and they released 
DOX in response of pH and temperature at TME that is beneficial in 
cancer therapy (Fig. 6) [251]. Table 4 provides a summary of 
stimuli-responsive liposomes for DOX delivery in cancer therapy. 

7. Internalization mechanism 

In section 4, it was discussed that surface modification of liposomes 
is of importance in increasing their internalization in cancer cells and 
promotes tumor tissue distribution of DOX in elevating its cytotoxicity 
[307–309]. Now, this question comes into mind that how nanostructures 
can internalize into tumor cells? how surface modification of liposomes 
with ligands can affect their internalization pathway? This section fo
cuses on the internalization mechanism of DOX-loaded liposomes that is 
a continuation of section 4. Overall, nanostructures can enter into cells 
via different pathways based on the particle size and surface treatment. 
The structures with micrometer size can enter into cells via phagocytosis 
or macropinocytosis [310–313]. During phagocytosis, cup-shaped 
membrane protrusions are formed that are vital for surrounding the 
particles. The particles taken up by protrusions determine their shape 
and size. Overall, dead cells, cell debris and pathogens are taken up by 
phagocytosis. As an actin-regulated mechanism, macropinocytosis sur
rounds extracellular fluid and can take particles via plasma membrane 
ruffling, forming organelles known as macropinosomes [311]. Actin 
assembly is of importance for phagocytosis and macropinocytosis, since 
these two pathways are involved in uptake of particles with micrometer 
size [313,314]. The particles with nanometer size are taken up by cells 
via a pathway known as endocytosis that includes clathrin-, caveolae- 
and receptor-mediated endocytosis. In clathrin-mediated endocytosis, 
coated pits are developed on the cytoplasmic part of cell membrane. 
Viruses mainly use clathrin-mediated endocytosis for entering into cells 
[315,316]. In caveolae-mediated endocytosis, hairpin-like caveolin 
coats are generated on the cytoplasmic part of cell membrane with 
diameter of 50–80 nm [317,318]. Biochemical and complicated 
signaling pathways participate in caveolin- and clathrin-mediated 
endocytosis [319]. Noteworthy, conjugation of receptors on the sur
face of nanostructures leads to their internalization in cells via 
receptor-mediated endocytosis [320]. Fig. 7 provides a schematic rep
resentation of pathways related to internalization of particles with 
different sizes in cells. 

It has been reported that DOX-loaded liposomes can internalize into 
cancer cells via endocytosis that increases accumulation of DOX at nu
cleus [321]. Although PEGylation of liposomes has been shown to in
crease blood circulation time, this function may lead to lack of 
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Fig. 6. Stimuli-responsive liposomes in DOX delivery.  

Table 4 
Stimuli-responsive liposomes for cancer therapy via DOX delivery.  

Stimulus Cargo Cancer type Remark Ref 

ROS- and light- 
responsive 

Doxorubicin Breast cancer DOX release in response to redox and light 
Drug release at tumor site 

[303] 

Light responsive Doxorubicin Pancreatic cancer Increased accumulation of drug at tumor site upon intravenous administration [292] 
Combination of chemotherapy and phototherapy 

Light responsive Doxorubicin Breast cancer Encapsulation efficiency of 90% [294] 
Magnetic resonance imaging and phototherapy 
Combination with chemotherapy in suppressing tumor growth 

Light responsive Doxorubicin Pancreatic cancer High stability [302] 
Drug release upon NIR irradiation 
Light-triggered drug release due to oxidation of DPPC and cholesterol 
Inhibiting tumor growth in xenograft model 

Light responsive Doxorubicin 
Chlorin e6 

Colon cancer Internalization in cytoplasmic area [304] 
Light irradiation led to accumulation of DOX at nucleus 
High cytotoxicity on cancer cells 

Light responsive Doxorubicin Ovarian, breast and lung 
cancers 

Drug release upon NIR laser irradiation [305] 
Modification with HER antibody increases targeted delivery 

pH responsive Doxorubicin Glioma High tumor targeting ability [262] 
Specific tumor recognition 
High internalization capacity 
Endo-lysosomal escape 
Suppressing invasion 
Inducing apoptosis 

pH sensitive Doxorubicin Breast cancer PEGylation decreases ability of pH-sensitive liposomes in DOX delivery and cancer suppression [280] 
pH sensitive Doxorubicin Lung cancer Effective pH-sensitive delivery of peptidomimetic-DOX conjugate [281] 

Drug release at pH level of 6.5 
Increased cellular uptake 

Redox responsive Doxorubicin Liver cancer Apoptosis induction [285] 
Selective targeting of liver cancer stem cells due to modification with CD133- and EpCAM- 
targeted peptides 
Exposure to GSH induces degradation of disulfide bond 

Redox responsive Doxorubicin 
Lonidamine 

Glioma Lysosomal escape and entering into mitochondria [286] 
Apoptosis induction 
Proliferation inhibition 

Redox sensitive Doxorubicin Osteosarcoma Zeta potential of − 26 demonstrating high stability of nanostructures [291] 
Increased cellular uptake of drug 
Tumor growth suppression 
Improving survival time 

Redox responsive Doxorubicin Osteosarcoma Functionalization of liposomes with hyaluronic acid in targeted delivery [306] 
Release of DOX in response to redox for suppressing cancer progression in vivo  

M. Hashemi et al.                                                                                                                                                                                                                               



Journal of Drug Delivery Science and Technology 80 (2023) 104112

13

pharmacological activity in DOX-loaded liposomes [322]. Selenium is 
an important micronutrient that is a cofactor for antioxidant enzymes 
and is vital for cell growth and life maintenance. Selenium has been used 
for purpose of chemoprevention and cancer treatment [323–325]. Se
lenium nanoparticles are used in cancer therapy and they can internalize 
in cancer cells via endocytosis [326–328]. Therefore, it can be used for 
liposome modification instead of PEG. It has been reported that 
selenium-functionalized liposomes can deliver DOX to cancer cells via 
macropinocytosis and clathrin-mediated endocytosis [329]. Another 
study demonstrates that DOX-loaded liposomes are taken up in cancer 
cells (HepG2 and A375 cells) via lipid rafts-mediated endocytosis. It was 
shown that internalization of liposomes was dependent on cationic lipid 
DOTAP and fusogenic lipid DOPE [330]. One of the limitations related 
to studies is that they have only shown that DOX-loaded liposomes can 
internalize in cancer cells via endocytosis [331–333]. However, particle 
size, zeta potential, rigidity and even composition of nanoparticles can 
greatly affect internalization [80,334]. Therefore, it is highly suggested 
to investigate such parameters in future studies related to cellular up
take and endocytosis of DOX-loaded liposomes in cancer cells. In section 
4, it was shown that ligands can increase internalization of liposomes to 
tumor cells via binding to receptors. Modification of liposomes with 
RGD can lead to integrin-mediated endocytosis of DOX-loaded nano
structures in cancer cells, confirming why such surface modification is of 
importance in increasing cellular uptake [335]. Another experiment also 
demonstrates that sterically stabilized DOX-loaded RGD-modified lipo
somes enter cancer cells via integerin-mediated endocytosis [336]. 
These studies demonstrate that endocytosis is the most common 
pathway for DOX-loaded liposomes in entering cancer cells [337–339]. 
Table 5 shows mechanisms used by DOX-loaded liposomes in entering 
into cancer cells. Table 6 summarizes the clinical studies. 

8. Conclusion and remarks 

Chemotherapy failure has been a common word in recent years and a 
factor responsible for death of many people around the world. 

Therefore, what is solution for this problematic issue? Nanocarriers can 
mediate targeted delivery of chemotherapeutic agents that not only 
improve cytotoxicity of anti-cancer agents, but also prevent drug resis
tance development. Therefore, it is suggested to use nanostructures for 
delivery of chemotherapy agents. DOX was chosen for this review, as it is 
one of the most common drugs used in cancer therapy. Activation of 
oncogenic pathways, apoptosis inhibition, induction of pro-survival 

Fig. 7. The different pathways used by particles in entering into cells.  

Table 5 
The internalization mechanism of DOX-loaded liposomes in tumor cells.  

Nanoparticle Cancer type Internalization 
mechanism 

Ref 

Selenium- 
functionalized 
liposomes 

Lung cancer Clathrin-mediated 
endocytosis 

[329] 

Macropinocytosis 
DOX-loaded liposomes Hepatocellular 

carcinoma 
Lipid rafts-mediated 
endocytosis 

[330] 

Melanoma 
DOX/gold 

nanoparticles coated 
with liposomes 

Cervical cancer Endocytosis [340] 

RGD-modified 
liposomes 

Melanoma Integrin-mediated 
endocytosis 

[335] 

Sterically stabilized 
DOX-loaded 
liposomes 

Melanoma Integrin-mediated 
endocytosis 

[336] 

Lactoferrin-modified 
DOX-loaded 
liposomes 

Glioma Receptor- and 
ansorption-mediated 
transcytosis 

[341] 

Disachharide-modified 
liposomes 

Hepatocellular 
carcinoma 

lectin-mediated 
endocytosis 

[342] 

Melanoma 
Breast cancer 
Cervical cancer 

GE11-modified 
liposomes 

Non-small cell 
lung cancer 

EGFR- and clathrin- 
mediated endocytosis 

[343] 

Folate-functionalized 
liposomes 

Lung cancer Receptor-mediated 
endocytosis 

[344]  
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autophagy, overexpression of drug efflux transporters and down- 
regulation of onco-suppressor factors are responsible for development 
of DOX resistance in cancer. There are several reasons showing that 
nanoparticles are of importance for DOX delivery. Among different 
kinds of nanostructures, liposomes were selected for this purpose, since 
they show high biocompatibility and they have been used in clinical 
course for treatment of patients. Therefore, translating findings of cur
rent review can be beneficial in treatment of cancer patients in near 
future. It has been demonstrated that liposomes can mediate co-delivery 
of DOX with phytochemicals to induce apoptosis and DNA damage in 
sensitizing cancer cells to chemotherapy. Besides, small molecules 
developed in laboratories can also sensitize tumor cells to DOX 
chemotherapy. The role of liposomal nanocarriers is to increase inter
nalization of these drugs in cancer cells. In addition to co-drug delivery, 
co-gene and -drug delivery by liposomes has been also beneficial in 
chemosensitivity. It has been reported that miRNAs, siRNA and shRNA 
can be used with DOX in cancer suppression and liposomes can mediate 
their delivery. The limitation is that there is no experiment regarding co- 
delivery of DOX and CRISPR by liposomes in cancer therapy. In addition 
to biocompatibility and high entrapment efficiency of liposomes, their 
surface modification is easy and based on studies, ligands and peptides 
have been conjugated to surface of liposomes for increasing their spec
ificity in purpose of DOX delivery. The DOX-loaded liposomes inter
nalize in tumor cells via endocytosis and ligand-modified liposomes 
choose receptor-mediated endocytosis. The use of phototherapy can 
increase efficiency of liposomes in reversing DOX resistance. Besides, 
stimuli-responsive liposomes such as pH-, redox- and light-responsive 
liposomes can mediate precise release of DOX at tumor site. These dis
cussions reveal that liposomes are promising carriers in field of DOX 
delivery and cancer suppression. 

According to Table 6, a number of DOX liposomes are being currently 
used in treatment of cancer patients. Therefore, milestone progress has 
been made in treatment of patients, but there are still some challenges 
that should be considered for clinical applications. The major benefit of 
liposomal nanostructures is that they carry low concentration of DOX 
that prevents chemoresistance and reduces side effects. Moreover, li
posomes provide sustained release of DOX. Although clinical studies 
have shown good efficacy of DOX-loaded liposomes in treatment of 
cancer patients, the optimal dosage still should be determined and how 
many times (frequency) these nanoparticles should be administered, 

since they can prolong circulation of DOX in bloodstream and therefore, 
the administration repeats decrease compared to DOX alone. Another 
challenge is that some of the researches cannot be translated into clinic, 
since the production of such liposomes (especially tumor targeted and 
stimuli-responsive liposomes) is time-consuming and expensive, and 
therefore, future studies should focus on clinically scalable liposomes for 
DOX in cancer therapy. 
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