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ARTICLE INFO ABSTRACT

Keywords: Cancer is still a major threat to human life that is characterized by abnormal proliferation and metastasis of
Liposome cancer cells. Chemotherapy is procedure of using anti-cancer drugs for preventing dissemination and prolifer-
Doxorubicin

ation of tumor cells to kill them in improving survival rate and prognosis of patients. Chemotherapy has been a
common conventional therapy for cancer, and it can be used along with surgical resection in cancer patients.
However, drug resistance has led to chemotherapy failure in patients, especially in advanced and metastatic
stages. Therefore, nano-scale delivery systems have been developed for reversing drug resistance and potenti-
ating efficacy of chemotherapy agents. Liposomes are spherical vesicles with low particle size and high
biocompatibility that have been used for drug delivery in cancer suppression. Liposomes can increase inter-
nalization of doxorubicin (DOX) as an anti-cancer drug in tumor cells to boost its cytotoxicity. Furthermore, co-
delivery of DOX with other anti-tumor drugs or gene therapy can lead to synergistic cancer therapy. pH-, redox-,
light- and multi-sensitive liposomes have been designed for precise delivery of DOX in cancer suppression.
Modification of liposomes with ligands such as hyaluronic acid that binds to CD44 receptor, enhances selectivity
towards cancer cells. Furthermore, DOX-loaded liposomes mainly internalize in cancer cells via endocytosis that
is dependent on different factors such as particle size, zeta potential and other physico-chemical properties.

Cancer therapy
Chemoresistance
Co-delivery

1. Introduction demonstrates that cancer is still a major cause of death [1]. The most
common and malignant cancers have been categorized in both males
The number of cancer-related deaths in 2020 (10 million) and females, but overall, lung cancer, breast cancer and colorectal
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cancers are among the most common and malignant tumors in both
sexes. The currently available treatments for cancer in pre-clinical and
clinical settings are gene therapy, surgery, hormone therapy, radiation
therapy and the most common one is chemotherapy [2-5]. In spite of
significant progresses in discovery of anti-cancer drugs for purpose of
cancer chemotherapy, cancer recurrence and poor prognosis are
observed in patients receiving chemotherapy. The cancer cells owing to
their unique characteristics such as proliferation and metastasis can
mediate resistance to chemotherapy. Based on estimates, up to 80-90%
of cancer-related deaths result from drug resistance and strategies
should be chosen in reversing such condition [6]. Overall, chemo-
resistance development can be explored in two cases including intrinsic
and acquired drug resistance. In intrinsic drug resistance, cancer cells
demonstrate mutations that can establish their colony and abnormally
proliferate lacking response to anti-cancer activity of chemotherapeutic
agents. However, if cancer cells develop resistance upon exposure to
chemotherapeutic agents, it is called acquired drug resistance [7].
Doxorubicin (DOX) is an anti-cancer drug with cancer suppression
ability via topoisomerase activity inhibition and reactive oxygen species
(ROS) generation. However, hyperactivity of drug efflux pumps such as
P-glycoprotein, activation of oncogenic pathways and others have been
implicated in development of DOX resistance in cancer cells [8]. The
exact mechanism responsible for DOX resistance in cancer is not been
determined; however as it was mentioned, a combination of underlying
mechanisms can lead to drug resistance [9-15]. The IncRNA SAMMSON
has been implicated in DOX resistance in breast cancer. Silencing
SAMMSON alleviates DOX resistance and promotes oxidative meta-
bolism [16]. Down-regulation of BCKDK is associated with protein
translation inhibition in breast cancer and enhanced sensitivity to DOX
chemotherapy [17]. Down-regulation of CXCR4 suppresses
PI3K/Akt/mTOR axis in triggering autophagic cell death and sensitizing
osteosarcoma cells to DOX chemotherapy [18]. For reversing DOX
resistance, several strategies have been taken. One of them is
co-application of DOX with other anti-cancer agents. For instance,
resveratrol stimulates apoptosis and increases sensitivity of tumor cells
to DOX chemotherapy. Lercanidipine and amlodipine as calcium chan-
nel inhibitors are capable of suppressing ERK/MAPK and TGF-§ path-
ways in re-sensitizing gastric tumor cells to DOX chemotherapy [20].
Another approach in gene therapy in mediating DOX sensitivity [21,22].
Noteworthy, recent studies have focused on application of nanocarriers
for DOX delivery and increasing its accumulation at cancer cells
[23-25]. The scope of current review is to understand potential of li-
posomes in delivery of DOX in cancer therapy. This article will cover
how application of liposomes can increase potential of DOX in cancer
suppression and liposomal nanostructures are beneficial in preventing
drug resistance. Moreover, it is discussed that liposomes can deliver
DOX with other anti-tumor drugs and even genes. The surface modifi-
cation of liposomes for increasing their selectivity and their application
in phototherapy for synergistic chemo-/photo-therapy is discussed.
Moreover, the stimuli-responsive liposomes for site-specific delivery of
DOX are shown. DOX is commonly used in cancer therapy and
DOX-loaded liposomal nanostructures can be used for targeted treat-
ment of human cancers.

2. Liposomes: Basics and biomedical application

Nanotechnology is defined as a field dealing with synthesis of ma-
terials at nanoscale and advent of nanotechnology provided a milestone
progress in drug delivery [26]. The use of nanotechnology allows for
efficient, precise and specific delivery of drugs to improve their accu-
mulation at unreachable physiological destinations. Multiple kinds of
nanocarriers have been developed with purpose of drug delivery that
have their own characteristics in terms of size, stability and biocom-
patibility. Drug loading and encapsulation efficiency are different
among nano-scale delivery systems and clinical application of delivery
systems depends on their safety profile [27]. The closed spherical
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vesicles with a lipid bilayer membrane surrounding an aqueous core are
known as liposomes [28]. The diameter of liposomes is at length of 400
nm to 2.5 mm and their particle size can be different with average range
of 1-100 nm. The unique properties (physical and chemical character-
istics) of liposomes have made them appropriate options for purpose of
drug delivery. Overall, several reasons are followed by using liposomes
for drug delivery purposes. The first and most important reason is
increasing targeting ability for enhancing accumulation of favorable
drugs at desirable site and preventing accumulation in unwanted tissues
that is of importance for minimizing adverse impacts. The second reason
can be improving solubility of drugs to accelerate parenteral drug
administration. Reducing clearance of drugs and providing sustained
release of drug at desirable site. Furthermore, liposomes can promote
stability of drugs and facilitate their penetration via barriers such as
blood-brain barrier and blood-cochlear barrier [29-32]. Therefore, it is
highly suggested to use liposomes for purpose of drug delivery. The
liposome discovery was first performed by Alec Bangham approximately
4 decades ago and after that, their use in various fields, especially
biomedical application was followed. Although liposomes are recom-
mended for purpose of drug delivery, one of their limitations is fast
limitation that can be overcome using PEGylation. Furthermore, surface
modification with targeting agents such as antibodies, peptides and
polymers such as hyaluronic acid can promote targeting ability of li-
posomes [33-37]. Fig. 1 provides an overview of liposome structure and
its biomedical application.

Recently, liposomes have been employed as ideal nano-scale delivery
systems for cancer diagnosis and therapy [15,38-41]. The hybrid
nanovesicles comprised of exosomes and liposomes with thermosensi-
tive property have been developed for suppressing CD47 and mediating
a combination of photothermal therapy and immunotherapy [42]. The
combination therapy with liposomes is of importance for purpose of
cancer therapy. Furthermore, liposomes can internalize in tumor cells
via endocytosis [43]. Owing to long-term circulating feature of lipo-
somes, they have been widely used for delivery of anti-cancer drugs.
Oridonin-loaded liposomes are able to suppress colon cancer prolifera-
tion and they have high encapsulation efficiency (85.79%) [44]. The
targeting efficiency of liposomes can be improved via surface modifi-
cation; a strategy that has been followed by a recent experiment via
modifying liposomes with cRGD to increase their attachment into
endothelial cells. Furthermore, liposomes can be designed in a way to
release cargo in response to temperature to suppress tumor proliferation
[45]. Interestingly, liposomes have been employed for delivery of both
synthetic molecules and phytochemicals in cancer therapy [46-48]. The
stimuli-responsive liposomes, especially pH-sensitive liposomes are of
interest for site-specific release of cargo in cancer suppression [49]. In
addition to drugs, liposomes can be used for delivery of genetic tools in
effective cancer therapy [50-57]. The following sections emphasize on
use of liposomes for DOX delivery in cancer therapy and improving its
accumulation at tumor site (Table 1).

3. Liposomes for DOX delivery
3.1. Co-delivery with drugs

After the development of drug resistance in procedure of cancer
therapy, some thoughts have been created to re-sensitize tumor cells.
Majority of chemotherapeutic agents induce apoptosis, cell cycle arrest
and DNA damage for purpose of tumor suppression. However, tumor
cells exert compensatory mechanisms in preventing chemotherapy-
mediated suppression. For instance, in case of apoptosis, tumor cells
increase expression level of anti-apoptotic factors such as Bcl-2 to pre-
vent apoptosis and mediate drug resistance. In case of cell cycle arrest
and DNA damage, they activate repair mechanisms. Therefore, chemo-
therapeutic agents such as DOX are not always that much effective that
they appear to be at first point due to intrinsic resistance mechanisms. In
this case, several underlying solutions can be considered that one of
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Fig. 1. Liposome structure and its biomedical application.

them is co-application of other anti-cancer agents. For instance, if
apoptosis inhibition or DNA damage repair are responsible for devel-
opment of drug resistance, other anti-cancer agents can be used to target
other pathways in triggering apoptosis and DNA damage (in condition
that there is no multidrug resistance) to increase sensitivity to chemo-
therapy [9,10,83-87]. Various kinds of small molecules and plant
derived-natural products have been employed for purpose of chemo-
sensitivity and they have demonstrated promising results [88-91].
However, there is another problem and is poor bioavailability of both
drugs for synergistic cancer chemotherapy that is due to presence of
biological barriers [92,93]. This drawback is more obvious in vivo
compared to in vitro and in animal models, synergistic cancer therapy
with co-application of two anti-cancer agents shows low efficacy. For
this purpose, it is highly recommended to develop nanoplatforms for
co-delivery of drugs and improving their bioavailability and therapeutic
index [94-98]. The current section focuses on the role of liposomes for
co-delivery of DOX with other drugs in cancer chemotherapy.
Schisandrin B (Sch B) is a potent anti-cancer agent for tumor sup-
pression and it is a modulator of molecular pathways. Sch B is capable of
impairing progression of tumor cells and induces apoptosis via PI3K/Akt
signaling inhibition [99]. Sch B impairs cancer metastasis via EMT in-
hibition and it reduces stemness of tumor cells [100]. The interesting
point is capacity of Sch B in cancer chemotherapy; so that it can increase

ability of paclitaxel in suppressing proliferation and metastasis of cer-
vical cancer cells to boost paclitaxel chemotherapy [101]. In a recent
experiment, liposomes have been prepared for co-delivery of DOX and
Sch B to mediate synergistic impact and there has been focus on mo-
lecular mechanisms affected in cancer therapy. The co-delivery of DOX
and Sch B exerts inhibitory impact on metastasis of lung tumor cells.
This combination delivery by liposomes is beneficial in EMT inhibition
via down-regulation of vimentin and also, inhibition of VEGF and
MMP-9 [102]. The combination delivery can be also beneficial in
affecting viability and proliferation rate of tumor cells. In a recent
attempt, liposomes were employed for co-delivery of DOX and glucoe-
vatromonoside derivative in breast cancer therapy. The prepared
co-loaded drug liposomes had particle size of 193.9 and 200.4 nm, zeta
potential of —2.2 and —2.4 mV, and high entrapment efficiency. This
co-delivery of drugs by liposomes led to induction of apoptosis and
G2/M cell cycle arrest in decreasing progression of breast tumor cells
[103]. These two studies highlight the fact that both inhibition of pro-
liferation and invasion of tumor cells by co-delivery can be advanta-
geous in increasing drug sensitivity.

Long-term and multiple uses of chemotherapy drugs can lead to
development of drug resistance in cancer due to overexpression of P-gp
that can also mediate multidrug resistance (MDR) [104]. Increasing
evidence has focused on application of P-gp inhibitors in cancer
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Table 1
An overview of liposomes employed for DOX delivery in cancer suppression.
Nanovehicle Cargo Cancer type Remark Ref
Chondroitin sulfate-modified liposomes Doxorubicin Breast cancer Good serum stability [58]
Retinoic 98.7% encapsulation efficiency
acid Anti-metastatic activity
RSPO-conjugated liposomes Doxorubicin Lung cancer Stimulation of tumor tissue necrosis [59]
Growth inhibition
Cetuximab-coated thermosensitive liposomes Doxorubicin Breast cancer High stability and particle size of 120 nm [60]
High cellular uptake due to modification with cetuximab
Combination of phototherapy and chemotherapy
Heat-triggered liposomes Doxorubicin Prostate cancer Preventing off-targeting [61]
Suppressing tumor growth
rBC2LCN lectin-modified liposomes Doxorubicin Pancreatic cancer High cytotoxicity and decreasing tumor weight in vivo [62]
Reducing side effects
MR-labelled liposomes Doxorubicin Breast cancer Ultrasound-mediated DOX release in breast cancer in mice [63]
Cell-penetrating peptide-modified pH-sensitive Doxorubicin Breast cancer Prolonged blood circulation time [64]
liposomes High selectivity and specificity towards tumor cells
Increased accumulation of DOX at tumor site
Phosphatidylcholine-based liposomes Doxorubicin Breast cancer High encapsulation efficiency (more than 80%) [65]
Drug release over 48 h
Sustained release and high cytotoxicity on tumor cells
Magnetic resonance activatable thermosensitive =~ Doxorubicin Breast cancer 200 nm in size and 68% drug release [66]
liposomes Decreased viability of tumor cells
Minimal homolytic potential
Chlorotoxin peptide-modified liposomes Doxorubicin Glioblastoma Growth inhibition [671
100-150 nm particle size
High entrapment efficiency
pH-sensitive liposomes Doxorubicin Cervical cancer Delivery of DOX to cancer cells and providing nuclear accumulation [68]
Apoptosis induction via caspase-3 overexpression
pH-sensitive liposomes Doxorubicin Ovarian cancer High stability at pH 7.4 and drug release at acidic pH [69]
Tariquidar Targeted delivery of drugs to cancer cells
MT1-MMP-activated liposomes Doxorubicin Pancreatic cancer Increased tumor blood perfusion to enhance accumulation of DOX at [70]
tumor site
Good distribution of DOX at tumor tissue
Heat-triggered release of DOX
Heparin-modified bone-targeting liposomes Doxorubicin Breast cancer Alendronate functions as a bone-targeting agent [71]
Anti-metastatic ability
Liposomes Doxorubicin Lung cancer 102-120 nm of particle size [72]
High drug release of 98% after 45 h
High cellular uptake due to modification with GE11 protein
Transferrin- and octaarginine-modified Doxorubicin Ovarian cancer High cytoplasmic accumulation of DOX [73]
liposomes Providing nuclear delivery
Internalization in cancer cells via receptor-mediated endocytosis and
macropinocytosis
Live macrophage-delivered liposomes Doxorubicin Breast cancer Increased DOX accumulation at tumor site [74]
Deeper penetration
Improving survival rate of mice
Alpha-tocopheryl succinate-modified liposomes ~ Doxorubicin Breast cancer pH-sensitive release of DOX [75]
High encapsulation efficiency and biocompatibility
Promising anti-cancer activity
Stearylamine-bearing liposomes Doxorubicin Melanoma Inducing anti-tumor immunity and preventing metastasis in animal model ~ [76]
Magnetic liposomes Doxorubicin Hepatocellular carcinoma Decreasing viability of tumor cells up to 80% [77]
Anti-proliferation activity
Temperature-sensitive liposomes Doxorubicin Colon cancer High nuclear localization of DOX [78]
Induction of pro-inflammatory cytokine storm
Triggering M1 polarization of macrophages
Temperature-sensitive liposomes Doxorubicin Prostate and colorectal High uptake and release of DOX in tumor cells [79]
cancers Sustained release
Enhanced anti-cancer activity
Thermosensitive liposomes Doxorubicin Ovarian cancer High drug release and cytotoxicity on tumor cells [80]
Polyelectrolyte/Gold nanoparticles Doxorubicin Cervical cancer Release of DOX lacking changes in structure of liposome or tubule and [81]
incorporating liposomes cytotoxicity on cancer cells
Liposomes Doxorubicin Colon cancer Great anti-proliferative activity [82]
Simvastatin

chemotherapy and suppressing MDR [105]. The most important prob-
lem in use of chemotherapy drug and P-gp inhibitor is that they are
effective in reversing MDR at high concentration levels, therefore
resulting in adverse impacts in vivo [105]. It is also worth mentioning
that some cancer types such as breast cancer are not negative for P-gp
and demonstrate low expression level of P-gp during initial steps of
chemotherapy [106,107]. Based on these discussions, it is suggested to
use nanoparticles for co-delivery of DOX and P-gp inhibition in breast
cancer therapy. In an effort, liposomes with high size uniformity and
entrapment efficiency were developed for release of DOX and P-gp

inhibitor in breast cancer therapy. Co-delivery of cyclosporine A (CsA)
and DOX by liposomes led to a significant reduction in their side impacts
and by increasing their internalization in cancer cells, a remarkable
increase was observed in anti-cancer activity and tumor suppression
[108]. Some of the natural products have demonstrated ability in
reducing expression and activity of P-gp that is beneficial in reversing
drug resistance during DOX chemotherapy. Quercetin is a phytochem-
ical that can prevent nuclear translocation of YB-1 and decreases P-gp
expression in reversing MDR [109]. Quercetin prevents signal trans-
duction from nucleotide-binding domain to transmembrane domain to
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avoid activity of P-gp [110]. In an experiment, PEGylated liposomes
were prepared for co-delivery of DOX and quercetin as P-gp modulator.
This combination delivery diminished tumor growth and volume and it
caused high decrease in proliferation rate of cancer cells. This strategy is
beneficial in suppressing drug resistance [111].

Curcumin is another anti-cancer agent that its combination with
resveratrol can suppress PI3K signaling in preventing drug resistance
[112,113]. Different kinds of nanostructures have been developed for
delivery of curcumin and DOX in cancer therapy. MnOj-shelled
DOX/curcumin-loaded nanoformulations can induce anti-tumor immu-
nity and suppress carcinogenesis in colorectal cancer therapy [114]. For
reversing MDR in esophageal cancer, PEGylated cancer cell
membrane-coated nanostructures have been employed for co-delivery of
curcumin and DOX with capacity of impairing tumor growth [115].
Tuftsin-bearing liposomes have been synthesized for encapsulation of
DOX and curcumin in cervical cancer suppression. This combination and
delivery by liposomes can result in significant reduction in growth and
volume of tumor in vitro and in vivo. The histopathological analysis
revealed capacity of this combination in cancer therapy lacking side
effects on other organs of body [116]. One of the ways for improving
blood circulation time of liposomes is to provide their PEGylation.
PEGylated liposomes are favored for co-delivery of curcumin and DOX
in colon cancer therapy. DOX and curcumin delivery by PEGylated li-
posomes suppressed tumor progression in vivo and they suppressed
angiogenesis and migration of colon cancer cells. Furthermore,
drug-loaded PEGylated liposomes induced apoptosis and prevented
resistance to cell death [117]. Two important factors result in increased
anti-cancer activity of DOX and curcumin upon delivery by liposomes
including long circulation in blood and increased internalization in
cancer cells [118]. Based on these studies, liposomes are able to effec-
tively deliver DOX along with other anti-cancer agents for increasing
cytotoxicity and appropriate tumor suppression (Fig. 2) [118-127].
Table 2 provides a summary of co-delivery of DOX with anti-cancer
drugs by liposomes in cancer therapy.

3.2. Co-delivery with genes

Three major arms for treatment of cancer include surgery, chemo-
therapy and radiotherapy. The most traditional strategy in cancer

Glucoevatromonoside £
>
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treatment is surgical resection and it is used for eliminating primary or
secondary metastatic cancers. Robotic and laparoscopic technologies
have been employed for improving morbidity and mortality after sur-
gery. However, tumor recurrence and relapse can commonly occurs
after surgery [144,145]. Irradiation is another approach in treatment of
cancer that involves inducing DNA damage in tumor cells and upon
application of high doses, it can cause cell death and inhibits tumor
growth. However, it can lead to some unexpected and undesirable
adverse impacts [3,146,147]. Due to aforementioned drawbacks,
chemotherapy has been used in cancer treatment, although it has faced
drug resistance and side effects that can be improved using nanocarriers.
Gene therapy is a new emerging approach in cancer therapy that in-
cludes insertion of exogenous nucleic acids into target cells for thera-
peutic purposes [148]. Gene therapy has also its own problems such as
degradation in blood circulation, low accumulation at tumor site and
off-targeting feature [86,149,150]. The current section focuses on the
use of liposomes for co-delivery of liposomes and genetic tools in cancer
chemotherapy.

microRNAs (miRNAs) are one of the most well-known regulators of
molecular pathways in cells and they are produced primarily in nucleus
and then with help of exportin-5, they are transferred into cytoplasm to
be embedded in RISC complex, leading to generation of a mature and
functional miRNA that can reduce expression of target gene via binding
to 3/-UTR and preventing mRNA translation [151]. Dysregulation of
miRNAs can cause significant alterations in biological mechanisms in
cells and is associated with cancer initiation and development [152].
miRNAs can be considered as promising target in cancer chemotherapy
and reversing drug resistance [153-156]. In an effort, liposomes have
been used for co-delivery of miR-375 and DOX in HCC suppression. This
nanoplatform provides co-delivery of gene and DOX in HCC suppression
that follows two important results including preventing drug resistance
and increasing cytotoxicity. miR-375 released from liposomes can
induce apoptosis and cell cycle arrest at G2/M phase that subsequently,
increases DOX sensitivity of HCC cells [157]. Therefore, it is highly
suggested to deliver tumor-suppressor miRNAs for improving DOX’s
cytotoxicity on tumor cells. It has been reported that co-delivery of
miR-101 and DOX is beneficial in HCC suppression, as miR-101 di-
minishes growth and metastasis of HCC cells and then, cytotoxicity of
DOX against tumor cells increases [158].
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Fig. 2. Liposomes in co-drug delivery.
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Table 2
Liposomal nanocarriers for co-delivery of drugs in cancer therapy.
Drugs Zeta potential Remarks Refs
(mV)
Particle size
(nm)
Encapsulation
efficiency (%)
Doxorubicin 118.1 nm up to Increased cytotoxicity of [128]
Verapamil 95% anti-tumor drugs against
prostate cancer
Gemcitabine Up to 75.5 nm Embedding anti-cancer [129]
Doxorubicin —26.3 mV agent in lipid bilayer of
liposomes
Intravenous administration
of liposomes
Suppressing tumor growth
Exerting long-term immune
response
Doxorubicin 130 nm Herceptin conjugation of [130]
liposomes for increasing
their selectivity towards
cancer cells
Simvastatin Up to 80% Inhibiting prostate cancer
progression in vitro and in
vivo
Decreasing tumor growth
up to 80%
Paclitaxel 112.4 and 128.5 Increased blood circulation [131]
Doxorubicin nm time and internalization in
cancer cells
—21 mV High anti-cancer activity
Up to 98% Decreasing toxicity on
organs and improving
biocompatibility
Doxorubicin Up to 122 nm Disulfiram prevents P-gp [132]
activity and mediates its
degradation to increase
internalization of DOX
Disulfiram —7.9, —8.6 and Suppressing tumor
—8.9mV progression synergistically
Doxorubicin 125 nm Reversing drug resistance [133]
Biochanin A —19.5 mV and impairing tumor
70% progression
Doxorubicin 158.8 nm Decreasing ICsg value [134]
Dihydroaretmisinin —15.8 mV Tumor inhibition up to
88.59%
Up to 95% Preferential nuclear
accumulation of anti-cancer
agents
Paclitaxel 244.4 nm Long circulation in [135]
bloodstream
Doxorubicin 74.1 and 89.6% High cytotoxicity and
suppressing tumor
progression
Doxorubicin 109 and 130.7 Modification with folate [136]
Astragaloside IV nm ligand and octa-arginine
polypeptide in increasing
selectivity of liposomes
towards breast tumor cells
—15.9 and Inhibiting cancer
-16.2 mV proliferation
Up to 98% Reversing drug resistance
Doxorubicin - No adverse effect [137]
Irinotecan Positive impact on relapsed
or refractory pediatric WT
Doxorubicin 132 nm Cytotoxicity on drug [138]
chloroquine More than 90% resistant-breast cancer cells
Doxorubicin 262 nm High tumor suppression [139]
Paclitaxel —6.2 mV Improved biocompatibility
Doxorubicin 170 nm Inhibition of angiogenesis [117]
Curcumin and invasion
—50 mV Apoptosis induction
Up to 90% Increased cytotoxicity on
colon cancer cells
Doxorubicin 133.3 and 146.4 Suppressing tumor growth [140]
Itraconazol nm

Journal of Drug Delivery Science and Technology 80 (2023) 104112

Table 2 (continued)

Drugs Zeta potential Remarks Refs
(mV)
Particle size
(nm)
Encapsulation
efficiency (%)
—2.5and —-2.7 Increasing drug
mV accumulation
Decreasing tumor weight
and volume
Doxorubicin 161, 180 and Inhibition of inflammation [141]
Curcumin 182 nm and angiogenesis
Up to —42 mV Down-regulation of NF-kB
Up to 87% Colon cancer suppression
Doxorubicin 120 nm Increased tumor [142]
distribution
Irinotecan —15mV High anti-tumor activity in
vivo
Doxorubicin 190-230 nm Suppressing tumor growth [143]
Curcumin 2-4 mV and increased accumulation

at tumor site

STABI is one of the targets in cancer therapy and its down-regulation
by miR-1224 suppresses gastric cancer progression [159]. SATB1 can be
used as a biomarker and its overexpression provides unfavorable prog-
nosis in colon cancer [160]. In an experiment, co-delivery of DOX with
SATB1-shRNA has been performed to impair gastric cancer progression.
The thermosensitive magnetic liposomes increase DOX and DOX inter-
nalization that is of importance in suppressing gastric cancer progres-
sion in vitro and in vivo [161]. This study revealed that liposomes can be
employed for delivery of shRNA as a promising genetic tool in increasing
DOX’s cytotoxicity against cancer cells. Similar to shRNA, small inter-
fering RNA (siRNA) is beneficial in cancer therapy and it is widely used
for purpose of cancer proliferation and invasion suppression. Further-
more, siRNA use can avoid drug resistance that is an increasing chal-
lenge in recent years. The reason of using nanocarriers for siRNA
delivery is that tumor cells and tissues can create barrier known as
blood-tumor barrier that prevents accumulation at tumor site. Further-
more, cell membrane has a negative charge and it is a little hard for
siRNA with negative charge to appropriately penetrate through cell
membrane. Besides, there are enzymes in bloodstream called RNase
enzymes that can degrade siRNA and decrease its potential in cancer
therapy [86,162-167]. In respect to potential of liposomes in drug and
gene delivery, Yang and colleagues have developed liposomal nano-
carriers for co-delivery of Bmi-1-siRNA and DOX in cancer therapy.
Tumor growth undergoes inhibition by this co-delivery and it is bene-
ficial in impairing tumor progression as well as increasing cytotoxicity of
DOX against cancer cells [168]. Based on these studies, liposomes are
ideal candidates in gene delivery and enhancing DOX sensitivity of
tumor cells. However, number of experiments about gene delivery is
lower compared to drug delivery, urging more studies in this field.
Furthermore, it is suggested to use liposomes for delivery of DOX, with
genes and drugs (triple delivery) to understand how this kind of delivery
is beneficial in impairing tumor progression, especially in vivo (Fig. 3).

4. Surface modification

It is quite obvious that use of liposomes can promote internalization
of DOX in cancer cells. This leads to two important results including A)
enhanced cytotoxicity of anti-cancer drugs, and B) preventing drug
resistance. The conventional liposomes can increase blood circulation
time of DOX and improve its bioavailability. All of these benefits have
resulted in special attention towards use of liposomes for purpose of
cancer therapy and DOX delivery. However, it has been reported that
conventional and unmodified liposomes can undergo some changes to
increase their targatibility that is of importance in cancer suppression.
For this purpose, biologists have worked on recognition of receptors
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Fig. 3. Liposomes in delivery of genes and DOX.

overexpressing on the surface of cancer cells. Then, a corresponding
ligand can be attached to surface of liposomes to enhance their targeting
efficiency [169-171]. Transferrin (Tf) is an important agent for purpose
of drug delivery, as it can mediate endocytic uptake of nanoparticles by
transferrin receptor (TfR) [172]. The overexpression of TfR has been in a
number of tissues in body, especially those that demonstrate high
turnover rate of cells. In tumor cells, there is a positive association be-
tween expression level of TfR and proliferation rate [173]. Owing to
overexpression of TfR on cancer cells, it is used for purpose of cancer
therapy and a number of small molecules targeting TfR have been
developed [174,175]. Tf-modified liposomes have been designed for
DOX delivery. Film dispersion and ammonium sulfate gradient method
were used for preparation of liposomes and then, Tf was conjugated to
surface of liposomes via amide bound with DSPE-PEG(2000)-COOH.
The Tf modification increases internalization of DOX in HepG2 cells
and it improves tissue distribution in animal model. Tf-modified lipo-
somes effectively delivered DOX to tumor site and reduced DOX con-
centration in organs of body such as heart and kidney [176]. Dual
modification can also be performed in increasing selectivity and speci-
ficity of liposomes in drug delivery. Folate receptors (FRs) are one of the
proteins that their function in cells, has been studied with details due to
specific role of folic acid in DNA synthesis and supporting growth rate of
cancer cells. Normal tissues demonstrate low expression level of FR,
while expression level of this receptor significantly increases in tumor
cells to internalize folate for cancer proliferation [177-179]. The
modification of nanoparticles with folic acid has been of importance in
providing targeted drug delivery [180]. In an effort, dual modification of
liposomes with Tf and folic acid has been performed. Dual modification

of PEGylated liposomes with Tf and folic acid resulted in 7-fold
enhancement in cellular association of nanostructures. Compared to
non-targeted nanoparticles, dual-modified DOX-loaded liposomes
demonstrated higher cytotoxicity and they suppressed tumor growth in
vivo up to 79% [181]. Furthermore, it is possible to develop derivatives
of these ligands to increase their specificity. For instance, an experiment
has developed a folate derivative, known as folate-polyethylene glyco-
l-cholesterol hemisuccinate (F-PEG-CHEMS) for modification of
DOX-loaded liposomes. The liposomes had particle size of 120 nm with
high colloidal stability, and were synthesized using polycarbonate
membrane extrusion. The KB cells overexpressing FR demonstrated high
interaction with liposomes and nanostructures easily internalized in
tumor cells. They showed high circulation time, showing they are
promising factor for DOX delivery in cancer suppression [182].

TAT peptide has been used for translocating cell membranes and
increasing intracellular delivery of cargoes [183-185]. Due to positive
charge of TAT peptide, it can be easily internalized in cancer cells [184,
186,187]. However, non-specificity is one of the drawbacks of TAT
peptide, limiting its application in drug delivery [188]. Therefore,
cleavable and non-cleavable PEGs are used to shield it [189-191]. In an
effort, folate and TAT co-modified liposomes were constructed using pH
gradient method and post-insertion method. The particle size of nano-
particles was up to 148 nm, zeta potential of —11.7 mV and entrapment
efficiency of 92.8%. The TAT peptide with cationic charge was fully
shielded in liposomes. The DOX-loaded dual-modified liposomes were
internalized in cancer cells and suppressed tumor progression.
Furthermore, they demonstrated high accumulation rate at tumor tissue
in vivo [192]. Due to easy surface modification of liposomes, various
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studies have focused on attaching ligands on the surface of liposomes for
targeted drug delivery. Neurophilin-1 (NRP-1) undergoes upregulation
in glioblastoma cells and tumor endothelium [193]. NRP-1 is involved in
oncogenic functions in cells such as angiogenesis, invasion and vascular
permeability [193,194]. The expression level of NRP-1 enhances in
positive association with glioblastoma malignancy. Therefore, it is of
importance to develop peptides targeting NRP-1. RGERPPR is a specific
peptide designed for targeting NRP-1 and it can also penetration into
tumor vessels and stroma [195-198]. The peptide-modified liposomes
have been used for DOX delivery in glioblastoma suppression. The
RGERPPR peptide-functionalized liposomes demonstrated particle size
of 90 nm with narrow size distributions. They enhanced internalization
in tumor cells and improved survival rate of mice in vivo [199]. These
studies highlight the fact that liposomal nanocarriers are ideal candi-
dates in DOX delivery and cancer suppression. However, there is another
way to increase their specificity towards tumor cells. The most effective
way is performing surface modification and the first step is under-
standing which receptors show overexpression in cancer cells. Then,
corresponding ligands can be conjugated to surface of liposomes in
attachment to receptors overexpressed on surface of cancer cells and
increasing cellular uptake (Table 3 and Fig. 4) [200-206].

5. Phototherapy combination

One of the new emerging strategies for cancer treatment is photo-
therapy that is divided into two categories including photodynamic
therapy (PDT) and phototherapy therapy (PTT). The aim of photo-
therapy is to induce cell death in cancer cells either by increasing ROS
generation or triggering hyperthermia. The nanotechnology-based
phototherapy can be used for tumor ablation and in recent years due

Journal of Drug Delivery Science and Technology 80 (2023) 104112

to development of drug resistance, a number of researchers have focused
on combination of phototherapy and chemotherapy in cancer suppres-
sion [221-224]. Different kinds of nanostructures have been used for
phototherapy =~ of  cancer.  Triphenylamine-perylene  diimide
conjugate-based organic nanostructures have been employed to provide
photothermal conversion upon exposure to NIR irradiation and by
increasing ROS generation, they mediate tumor ablation [225]. For
developing nanostructures for purpose of phototherapy, a special
attention should be directed towards biocompatibility [226]. Notably,
always NIR irradiation is not necessary for phototherapy. It has been
reported that hyperthermia can mediate release of IR780 from virus-like
particles to mediate cancer phototherapy [227]. The development of
nanostructures for purpose of phototherapy depends on use a photo-
sensitizer in nanoparticles that can be activated upon irradiation, lead-
ing to PDT or PTT for purpose of tumor ablation [228-231]. The current
section focuses on the role of liposomes for purpose of phototherapy and
increasing potential of DOX in cancer suppression.

In an experiment, thermosensitive liposomes were decorated with
graphene oxide (GO) for purpose of photo-chemotherapy. The attach-
ment of GO to surface of cationic DOX-loaded liposomes was performed
via conjugation to poly (i-lysine). The resulting nanocarriers demon-
strated particle size of 267.9 nm, zeta potential of +43.9 mV and
encapsulation efficiency of 86.4%. The structure of GO attached to
liposome surface was layer-by-layer allowing gel-to-liquid phase tran-
sition in response to NIR laser irradiation. These nanostructures can
mediate both phototherapy and chemotherapy in ablating breast tumor
cells [232]. In previous sections, it was discussed that use of P-gp in-
hibitors can significantly increase potential of DOX in cancer suppres-
sion. Notably, combination of DOX, P-gp inhibitor and PDT can exert
synergistic cancer suppression. A recent experiment has developed

Table 3

The surface modified liposomes for targeted delivery of DOX.
Cargo Ligand and surface modification Cancer type Remark Ref
Doxorubicin Anti-MUC1/CD44 dual-aptamer Breast cancer Increased cellular uptake [207]

Doxorubicin epigallocatechin-3-O-gallate (EGCG) and Myeloma
polyethyleneglycol (PEG) modification Melanoma
Leukemia
Doxorubicin Sigma-2 Prostate cancer
Doxorubicin Lactoferrin Hepatocellular
carcinoma
Doxorubicin EGFR Breast cancer
Doxorubicin Anti-MT1-MMP antibody Fibrosarcoma
Doxorubicin TAT peptide and transferrin Glioma
Doxorubicin NGR ligand Breast cancer
Doxorubicin TAT peptide and angiopep-2 Glioma
Doxorubicin p-mannose and i-fructose Sarcoma
Paclitaxel Transferrin and TAT peptide Melanoma
Doxorubicin
Doxorubicin AG73 peptide Colon cancer
Doxorubicin PHSCNK Breast cancer
Doxorubicin TAT peptide and transferrin Glioma
Paclitaxel

Cytotoxicity on cancer stem cells
Inhibiting metastasis in nude mice

Upregulation of caspase-3 and -8 to induce apoptosis [208]
Modification of liposomes increased their internalization in DU-145 cells [209]
100 nm in particle size and encapsulation efficiency of 97% [210]
High cellular uptake and cytotoxicity

Attachment to cancer cells overexpressing EGFR receptor [211]

High stability in serum
Cargo release upon hyperthermia
High cytotoxicity on cancer cells

Increase in cellular uptake and administration to mice resulted in tumor [212]
growth inhibition
Targeting endothelial and tumor monolayer cells [213]

High tumor distribution
Increased survival time of xenografts

90 nm in particle size and zeta potential of 95% [214]
Specific targeting of tumor cells and enhanced internalization in cancer cells
Penetrating from cell membrane via an unsaturated pathway [215]

Crossing over BBB
High stability and cellular uptake

Modification of PEGylated liposomes increase tumor tissue distribution of [216]
DOX and mediate exhaustion of tumor-associated macrophages
Apoptosis induction [217]

Increased cytotoxicity against cancer cells

Co-encapsulation of paclitaxel and DOX

Good biodistribution and high cytotoxicity [218]
100 nm particle size [219]
Negative charge

High cytotoxicity and cellular uptake

More efficiently in tumor suppression in combination therapy compared to ~ [220]
monotherapy

Increased cellular uptake

Passing through endothelial monolayer and penetration into deep parts of

tumor spheroids
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Fig. 4. Surface-modified liposomes in DOX delivery.

PEGylated liposomes for purpose of delivery of DOX, quinine as P-gp
inhibitor and indocyanine green (ICG) for PDT. The liposomes were
remotely co-loaded with DOX and quinine, and ICG was adsorbed to
nanocarriers. Co-delivery of DOX and quinine by liposomes led to
effective suppression of tumor growth. Notably, addition of PDT to this
co-delivery boosted anti-cancer activity [233]. The phototherapy can be
exploited in a way to increase nuclear accumulation of DOX and provide
synergistic treatment. A good example of such technique is to add or
dope protoporphyrin IX (PpIX) into lipid bilayer of liposomes. When
DOX-loaded liposomes reach cancer cells, due to presence of PpIX, they
demonstrate high affinity for merging with membrane and increasing
cellular uptake of DOX. Upon mild laser irradiation, the activity of drug
efflux transporters such as P-gp is impaired and they mediate nuclear
delivery of DOX that is of importance in effective suppression of lung
cancer [234].

Recently, magnetic nanostructures have been commonly used due to
their potential for imaging, diagnosis and treatment [235-237]. Mag-
netic nanostructures are future and appropriate materials for hyper-
thermia and imaging. The exposure of magnetic nanostructure to
magnetic field results in heat production [238,239]. In an experiment,
photosensitive magnetic liposomes have been designed for DOX delivery
in cancer suppression. The m-THPC as photosensitizer and DOX as
anti-cancer drug have been loaded in hydrophobic bilayer of liposomes
and resulting magnetic nanocarriers demonstrated particle size of 10, 22
and 30 nm, while liposomes had particle size of 40, 70 and 110 nm. The
superparamagnetic nanostructures were loaded in core of liposomes and

their heating efficiency synergized with DOX in cancer suppression
[240]. Although chemotherapy or PDT alone is beneficial in cancer
ablation, it has been reported their combination exerts synergistic
impact and using liposomes enables increased accumulation at tumor
site [241]. In respect to increased efficacy in killing tumor cells upon
combination of chemotherapy and phototherapy [242-244], the chance
of tumor recurrence due to presence of cancer cell population available
after therapy decreases. Therefore, it is highly suggested to use nano-
particles for combination of chemo (DOX)-phototherapy (Fig. 5)
[245-247].

6. Stimuli-responsive carriers
6.1. pH-sensitive

Recently, much attention has been directed towards using multi-
functional and stimuli-responsive nanocarriers for DOX [248-252].
Tumor microenvironment (TME) has been composed of extracellular
matrix and stromal cells such as fibroblasts, immune-inflammatory cells,
and endothelial cells that are associated with tumor progression and
metastasis upon interacting with cancer cells [253,254]. The biological
properties of TME are determined via different factors including tissue
acidosis, hypoxia, proteases, immune reactions and abnormal vessel
structures, among others [255-257]. The metabolic plasticity of tumor
cells is vital for reshaping TME that is vital for their adaptation to oxygen
and nutrient supply [258]. TME is different from normal tissue and has
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lower pH. In recent years, low pH level of TME has been considered as a
promising factor for effective drug delivery in cancer suppression [259].
pH-sensitive liposomes can be used for stimulation of anti-tumor im-
munity [260]. Besides, co-delivery of curcumin and gemcitabine via
pH-sensitive liposomes has been beneficial in promoting drug internal-
ization in cancer cells and impairing tumor progression [261]. This
section focuses on the role of pH-sensitive liposomes for DOX delivery.

In a recent experiment, pH-sensitive liposomes were developed for
delivery of DOX in glioma treatment. Glucose and triphenylphospho-
nium (TPP) were as targeting agents for preparation of liposomes to
appropriately deliver DOX and lonidamine as chemotherapeutic sensi-
tizer in glioma suppression. The pH-sensitive liposomes can penetrate
into blood-brain barrier (BBB) and reach cancer cells. These pH-sensitive
liposomes are beneficial in improving pharmacokinetic features and
increasing ability in tumor recognition. Besides, cargo-loaded pH-sen-
sitive liposomes can induce apoptosis and significantly suppress growth
and metastasis of glioma, while they reduce adverse impacts on normal
tissues. Furthermore, pH-sensitive liposomes suppress lung metastasis in
animal models and improve their survival time [262]. In recent years,
nucleolin has been considered as a promising target for therapeutic
approaches [263,264]. This nucleolar protein exerts various biological
functions in cells including regulating metabolism, cell cycle progres-
sion, nucleolus structure and microtubule nucleation [265-267]. The
overexpression of nucleolin has been shown in different cancers and it is
responsible for unfavorable prognosis [268-272]. Nucleolin can in-
crease progression of cancer cells via triggering metastasis and angio-
genesis [273]. An interesting experiment has evaluated expression level
of nuceolin in cancer cells and its impact on the internalization of li-
posomes. This experiment revealed that F3-peptide-targeted liposomes
can deliver DOX to cancer cells and expression level of nucleolin in
tumor cells is not a restriction factor. In order to use nucleolin in future
studies for development of targeted nano-scale delivery systems, a spe-
cial attention should be directed towards structural nucleolin homology
(higher than 84%) among species [274].

Although liposomes have been promising carriers for DOX in cancer
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therapy, there are some restrictions that should be considered by
studies. One of the limitations of liposomes their uptake by mononuclear
phagocyte system [258] and another one is difficulty in predicting
liposome extravasation. Stability and circulation time in bloodstream
are other drawbacks of liposomes that should be considered. One of the
most common and well-known ways to improve liposome characteristics
such as improving bloodstream circulation, stability and decreasing
uptake by MPS is to perform PEGylation [275-279]. An interesting
study has evaluated impact of PEGylation on anti-tumor activity of
pH-sensitive DOX-loaded liposomes. In this experiment, two different
kinds of liposomes including PEGylated and non-PEGylated were pre-
pared. Based on TEM images, no different was observed in morphology
or size of liposomes. Both kinds of liposomes had diameter of 140 nm
and zeta potential close to neutrality, and their entrapment efficiency
was higher than 90%. Interestingly, non-PEGylated DOX-loaded
pH-sensitive liposomes had higher internalization in cancer cells
compared to PEGylated liposomes, showing that PEGylation diminishes
accumulation of nanoparticles at tumor site. In animal models (in vivo),
non-PEGylated liposomes caused more decrease in tumor growth, up to
60% that was higher compared to PEGylated liposomes. Therefore, it is
recommended to do not PEGylate DOX-loaded pH-sensitive liposomes
for purpose of cancer therapy [280]. The benefit of using pH-sensitive
liposomes is that they can release DOX at pH similar to TME that is
6.5 compared to normal and physiological pH that is 7.4 [281].

6.2. Redox-responsive

Another feature of TME is glutathione level that has been also
exploited in development of nano-scale delivery systems. Aerobic cells
generate reactive oxygen species (ROS) that is beneficial for vital
pathway and mechanisms responsible for cell survival. The levels of
antioxidants in cancer cells is higher compared to ROS and if ROS pro-
duction increases, it can cause cell death [282-284]. A recent experi-
ment has developed redox-sensitive liposomes containing DOX and
salinomycin (Sal) for treatment of liver cancer. Two types of CD133-and
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EpCAM-targeted peptides were used to design Y-shaped CEP ligands that
were attached to surface of liposomes. These liposomes selectively tar-
geted liver cancer stem cells. The liposomes underwent endocytosis to
enter into cytoplasm of liver cancer cells and high concentration level of
glutathione (GSH) led to release of cargo due to breaking disulfide
bonds. Then, release of DOX and Sal occurs to suppress tumor prolifer-
ation [285]. In another experiment, redox-responsive liposomes were
modified with glucose and triphenylphosphonium (TPP) and then,
loaded with DOX and lonidamine (LND). These two anti-cancer agents
exert synergistic impact in cancer suppression. These liposomes increase
internalization of drugs at tumor cells and provide their mitochondrial
uptake. They provide lysosomal escape and suppress growth rate of
cancer cells, while triggering apoptosis. The redox-sensitive liposomes
increased ROS generation and decreased ATP generation to mediate
mitochondrial dysfunction in favor of cancer suppression [286]. Note-
worthy, GSH levels are higher in cells compared to extracellular matrix,
and cancer cells have higher levels of GSH compared to normal cells
[287-290]. Redox-sensitive liposomes are promising factors for purpose
of cancer therapy and suppressing progression of various cancers. The
redox-sensitive DOX-loaded liposomes had particle size of —26.07 mV
and they increased internalization of drugs at tumor cells that are
beneficial in cancer therapy. These nanocarriers suppressed tumor
growth in vivo and increased survival of animal models. They released
cargo in response to redox status and their modification with hyaluronic
acid was performed to increase their selectivity towards osteosarcoma
cells overexpressing CD44 [291].

6.3. Light- and thermo-responsive

Although previous sections have focused on the pH and ROS as
factors to develop multifunctional liposomes for purpose of DOX de-
livery in cancer suppression, there is another kind of smart liposomes
that more control is placed on them and are known as light-responsive
liposomes that are based on exogenous stimuli. During development of
liposomes for DOX delivery, it should be noted that use of cholesterol
and PEGylation are vital for DOX loading, but they lead to slowed light-
triggered release of drug. It has been shown that presence of DOX in
liposomes can increase its bloodstream circulation and stability. The
liposomes were injected into animal models via intravenous route and
upon near infrared irradiation (NIR), a significant increase in DOX
release, up to 7-fold increase in DOX concentration was observed [292].
In order to create photoactivable liposomes, it is necessary to load
photosensitizers in liposomes [293]. Furthermore, light-responsive li-
posomes not only release DOX in response to exogenous stimulus, but
also are beneficial in providing photo-chemotherapy [294] that was
discussed in previous section. Porphyrin-phospholipid (PoP) is
commonly used for generation of self-assembled nanoparticles and are
promising for precise cargo release and theranostic purposes [292,
295-300]. It has been reported that introduction of low amount of Pop
such as 2 mol% to prepared liposomes does not affect their blood cir-
culation time and can enhance phototherapeutic potential because of
light-mediated drug release and vasculature permeabilization [292].
Since liposomes have demonstrated good potential in improving
vascular permeabilization in DOX-mediated chemotherapy [301], more
studies related to light-responsive liposomes for this purpose should be
peformed. Light-responsive liposomes with small amounts of unsatu-
rated and PoPs have been used for DOX delivery. In physiological con-
ditions, liposomes demonstrate high stability lacking cargo release, but
exposure to light leads to drug release at a minute. With low concen-
tration levels of PoP, rapid laser-mediated drug release occurs.
Furthermore, NIR irradiation results in oxidation of DOPC and choles-
terol to mediate drug release. Addition of scavenger or antioxidant re-
sults in lack of cargo release at the presence of light, showing that
oxidation of lipids is necessary for DOX release under irradiation. In vivo
experiment on xenograft mice demonstrated that DOX-loaded liposomes
can suppress tumor growth efficiently [302].
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6.4. Multi-responsive

For more precise delivery of DOX by liposomes in cancer therapy,
multi-responsive liposomes have been developed. In a recent effort, li-
posomes that are sensitive to both redox and light have been designed
for DOX delivery. Compared to conventional liposomes, these nano-
formulations demonstrated higher biocompatibility on normal cells and
in another hand, they had higher cytotoxicity on cancer cells. They were
internalized in cancer cells via endocytosis and upon irradiation, high
amount of ROS was produced that suppressed tumor growth up to
93.5%. Upon vein injection of DOX-loaded multifunctional liposomes,
they preferentially accumulated at tumor site and reached to tumor site
upon 24 h. Upon irradiation and drug release, tumor growth inhibition
occurred by 94.9% [303]. In another experiment, pH-temperature dual
sensitive liposomes were developed for DOX delivery. It is obvious that
TME has lower pH compared to normal tissue, and rapid metabolism of
cancer cells can result in hyperthermia that is of importance for devel-
opment pH- and temperature-sensitive liposomes. The prepared lipo-
somes were stabilized by cholesterol and DPPC and then, were
conjugated to NHy-PEGylated gold nanoparticles. The final nano-
structures demonstrated particle size of 415-650 nm and zeta potential
of —23 mV that is attributed to phosphate groups of DG-CDP. The
nanoparticles showed encapsulation efficiency of 78% and they released
DOX in response of pH and temperature at TME that is beneficial in
cancer therapy (Fig. 6) [251]. Table 4 provides a summary of
stimuli-responsive liposomes for DOX delivery in cancer therapy.

7. Internalization mechanism

In section 4, it was discussed that surface modification of liposomes
is of importance in increasing their internalization in cancer cells and
promotes tumor tissue distribution of DOX in elevating its cytotoxicity
[307-309]. Now, this question comes into mind that how nanostructures
can internalize into tumor cells? how surface modification of liposomes
with ligands can affect their internalization pathway? This section fo-
cuses on the internalization mechanism of DOX-loaded liposomes that is
a continuation of section 4. Overall, nanostructures can enter into cells
via different pathways based on the particle size and surface treatment.
The structures with micrometer size can enter into cells via phagocytosis
or macropinocytosis [310-313]. During phagocytosis, cup-shaped
membrane protrusions are formed that are vital for surrounding the
particles. The particles taken up by protrusions determine their shape
and size. Overall, dead cells, cell debris and pathogens are taken up by
phagocytosis. As an actin-regulated mechanism, macropinocytosis sur-
rounds extracellular fluid and can take particles via plasma membrane
ruffling, forming organelles known as macropinosomes [311]. Actin
assembly is of importance for phagocytosis and macropinocytosis, since
these two pathways are involved in uptake of particles with micrometer
size [313,314]. The particles with nanometer size are taken up by cells
via a pathway known as endocytosis that includes clathrin-, caveolae-
and receptor-mediated endocytosis. In clathrin-mediated endocytosis,
coated pits are developed on the cytoplasmic part of cell membrane.
Viruses mainly use clathrin-mediated endocytosis for entering into cells
[315,316]. In caveolae-mediated endocytosis, hairpin-like caveolin
coats are generated on the cytoplasmic part of cell membrane with
diameter of 50-80 nm [317,318]. Biochemical and complicated
signaling pathways participate in caveolin- and clathrin-mediated
endocytosis [319]. Noteworthy, conjugation of receptors on the sur-
face of nanostructures leads to their internalization in cells via
receptor-mediated endocytosis [320]. Fig. 7 provides a schematic rep-
resentation of pathways related to internalization of particles with
different sizes in cells.

It has been reported that DOX-loaded liposomes can internalize into
cancer cells via endocytosis that increases accumulation of DOX at nu-
cleus [321]. Although PEGylation of liposomes has been shown to in-
crease blood circulation time, this function may lead to lack of
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Table 4

Stimuli-responsive liposomes for cancer therapy via DOX delivery.
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Fig. 6. Stimuli-responsive liposomes in DOX delivery.

Stimulus

Cargo

Cancer type

Remark

Ref

ROS- and light-
responsive
Light responsive

Light responsive

Light responsive

Light responsive

Light responsive

PH responsive

PH sensitive
pH sensitive

Redox responsive

Redox responsive

Redox sensitive

Redox responsive

Doxorubicin

Doxorubicin

Doxorubicin

Doxorubicin

Doxorubicin
Chlorin e6

Doxorubicin

Doxorubicin

Doxorubicin
Doxorubicin

Doxorubicin

Doxorubicin
Lonidamine

Doxorubicin

Doxorubicin

Breast cancer
Pancreatic cancer

Breast cancer

Pancreatic cancer

Colon cancer

Ovarian, breast and lung
cancers
Glioma

Breast cancer
Lung cancer

Liver cancer

Glioma

Osteosarcoma

Osteosarcoma

DOX release in response to redox and light

Drug release at tumor site

Increased accumulation of drug at tumor site upon intravenous administration
Combination of chemotherapy and phototherapy

Encapsulation efficiency of 90%

Magnetic resonance imaging and phototherapy

Combination with chemotherapy in suppressing tumor growth

High stability

Drug release upon NIR irradiation

Light-triggered drug release due to oxidation of DPPC and cholesterol
Inhibiting tumor growth in xenograft model

Internalization in cytoplasmic area

Light irradiation led to accumulation of DOX at nucleus

High cytotoxicity on cancer cells

Drug release upon NIR laser irradiation

Modification with HER antibody increases targeted delivery

High tumor targeting ability

Specific tumor recognition

High internalization capacity

Endo-lysosomal escape

Suppressing invasion

Inducing apoptosis

PEGylation decreases ability of pH-sensitive liposomes in DOX delivery and cancer suppression
Effective pH-sensitive delivery of peptidomimetic-DOX conjugate

Drug release at pH level of 6.5

Increased cellular uptake

Apoptosis induction

Selective targeting of liver cancer stem cells due to modification with CD133- and EpCAM-
targeted peptides

Exposure to GSH induces degradation of disulfide bond

Lysosomal escape and entering into mitochondria

Apoptosis induction

Proliferation inhibition

Zeta potential of —26 demonstrating high stability of nanostructures
Increased cellular uptake of drug

Tumor growth suppression

Improving survival time

Functionalization of liposomes with hyaluronic acid in targeted delivery
Release of DOX in response to redox for suppressing cancer progression in vivo

[303]
[292]

[294]

[302]

[304]

[305]

[262]
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[306]

12



M. Hashemi et al.

Particles with
micrometer size

Phagocytosis

©

Macropinocytosis

Clathrin-mediated
endocytosis

Journal of Drug Delivery Science and Technology 80 (2023) 104112

Particles with
nanometer size

Caveolae-mediated
endocytosis

Receptor-mediated
endocytosis

|
|
|
|
|
|
|
|
|
¢ | ‘ — ‘
| c ©
7 > w7 \ & 3, & ok
! [ %1 << e
‘ ,/ { X . 1| Clathrin . L < e QL 9
o LN (e e S
»
; \\\ 1 ’/ * 335437
~= »
| =
‘ l
© |
Py PRLLT
| s NS 4 £ “00 N 4“(‘
o | . q \ e oL i ¥ e
| "}..H 3 o $
‘ \ N7 e PA% LIS
T d Vpsissirol
= > NS 23590
|
~N N o
DAY S SN

Fig. 7. The different pathways used by particles in entering into cells.

pharmacological activity in DOX-loaded liposomes [322]. Selenium is
an important micronutrient that is a cofactor for antioxidant enzymes
and is vital for cell growth and life maintenance. Selenium has been used
for purpose of chemoprevention and cancer treatment [323-325]. Se-
lenium nanoparticles are used in cancer therapy and they can internalize
in cancer cells via endocytosis [326-328]. Therefore, it can be used for
liposome modification instead of PEG. It has been reported that
selenium-functionalized liposomes can deliver DOX to cancer cells via
macropinocytosis and clathrin-mediated endocytosis [329]. Another
study demonstrates that DOX-loaded liposomes are taken up in cancer
cells (HepG2 and A375 cells) via lipid rafts-mediated endocytosis. It was
shown that internalization of liposomes was dependent on cationic lipid
DOTAP and fusogenic lipid DOPE [330]. One of the limitations related
to studies is that they have only shown that DOX-loaded liposomes can
internalize in cancer cells via endocytosis [331-333]. However, particle
size, zeta potential, rigidity and even composition of nanoparticles can
greatly affect internalization [80,334]. Therefore, it is highly suggested
to investigate such parameters in future studies related to cellular up-
take and endocytosis of DOX-loaded liposomes in cancer cells. In section
4, it was shown that ligands can increase internalization of liposomes to
tumor cells via binding to receptors. Modification of liposomes with
RGD can lead to integrin-mediated endocytosis of DOX-loaded nano-
structures in cancer cells, confirming why such surface modification is of
importance in increasing cellular uptake [335]. Another experiment also
demonstrates that sterically stabilized DOX-loaded RGD-modified lipo-
somes enter cancer cells via integerin-mediated endocytosis [336].
These studies demonstrate that endocytosis is the most common
pathway for DOX-loaded liposomes in entering cancer cells [337-339].
Table 5 shows mechanisms used by DOX-loaded liposomes in entering
into cancer cells. Table 6 summarizes the clinical studies.

8. Conclusion and remarks

Chemotherapy failure has been a common word in recent years and a
factor responsible for death of many people around the world.

13

Table 5
The internalization mechanism of DOX-loaded liposomes in tumor cells.
Nanoparticle Cancer type Internalization Ref
mechanism
Selenium- Lung cancer Clathrin-mediated [329]
functionalized endocytosis
liposomes Macropinocytosis
DOX-loaded liposomes Hepatocellular Lipid rafts-mediated [330]
carcinoma endocytosis
Melanoma
DOX/gold Cervical cancer Endocytosis [340]
nanoparticles coated
with liposomes
RGD-modified Melanoma Integrin-mediated [335]
liposomes endocytosis
Sterically stabilized Melanoma Integrin-mediated [336]
DOX-loaded endocytosis
liposomes
Lactoferrin-modified Glioma Receptor- and [341]
DOX-loaded ansorption-mediated
liposomes transcytosis
Disachharide-modified Hepatocellular lectin-mediated [342]
liposomes carcinoma endocytosis
Melanoma
Breast cancer
Cervical cancer
GE11-modified Non-small cell EGFR- and clathrin- [343]
liposomes lung cancer mediated endocytosis
Folate-functionalized Lung cancer Receptor-mediated [344]
liposomes endocytosis

Therefore, what is solution for this problematic issue? Nanocarriers can
mediate targeted delivery of chemotherapeutic agents that not only
improve cytotoxicity of anti-cancer agents, but also prevent drug resis-
tance development. Therefore, it is suggested to use nanostructures for
delivery of chemotherapy agents. DOX was chosen for this review, as it is
one of the most common drugs used in cancer therapy. Activation of
oncogenic pathways, apoptosis inhibition, induction of pro-survival
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Table 6
A summary of clinical trials using DOX-loaded liposomes in cancer patients.
Nanovehicle Phase Remark Clinical
number
Doxorubicin Phase I 20 mg/10 ml injection of NCT03681548
hydrochloride nanoparticles in treatment
liposome of ovarian cancer
Doxorubicin HCL Phase II Treatment of metastatic NCT00193037
liposome breast cancer patients and
its comparison with
docetaxel
Doxorubicin Phase I Treatment of ovarian cancer ~ NCT02237690
hydrochloride patients with 30 participants
liposome
Liposomal Phase I Intraductal and intravenous NCT00290732
doxorubicin administration in treatment
of invasive breast cancer
PEGylated Not Co-administration of NCT03221881
liposomal applicable nanoparticles and docetaxel
doxorubicin in treatment of patients
Doxorubicin Phase 11 A combination of NCT00445406
hydrochloride nanoparticles and
liposome bevacizumab in treatment of
recurrent or metastatic
breast cancer
ThermoDox Phase 1/1 Thermodox with approved NCT00826085

hyperthermia in treatment
of recurrent breast cancer

autophagy, overexpression of drug efflux transporters and down-
regulation of onco-suppressor factors are responsible for development
of DOX resistance in cancer. There are several reasons showing that
nanoparticles are of importance for DOX delivery. Among different
kinds of nanostructures, liposomes were selected for this purpose, since
they show high biocompatibility and they have been used in clinical
course for treatment of patients. Therefore, translating findings of cur-
rent review can be beneficial in treatment of cancer patients in near
future. It has been demonstrated that liposomes can mediate co-delivery
of DOX with phytochemicals to induce apoptosis and DNA damage in
sensitizing cancer cells to chemotherapy. Besides, small molecules
developed in laboratories can also sensitize tumor cells to DOX
chemotherapy. The role of liposomal nanocarriers is to increase inter-
nalization of these drugs in cancer cells. In addition to co-drug delivery,
co-gene and -drug delivery by liposomes has been also beneficial in
chemosensitivity. It has been reported that miRNAs, siRNA and shRNA
can be used with DOX in cancer suppression and liposomes can mediate
their delivery. The limitation is that there is no experiment regarding co-
delivery of DOX and CRISPR by liposomes in cancer therapy. In addition
to biocompatibility and high entrapment efficiency of liposomes, their
surface modification is easy and based on studies, ligands and peptides
have been conjugated to surface of liposomes for increasing their spec-
ificity in purpose of DOX delivery. The DOX-loaded liposomes inter-
nalize in tumor cells via endocytosis and ligand-modified liposomes
choose receptor-mediated endocytosis. The use of phototherapy can
increase efficiency of liposomes in reversing DOX resistance. Besides,
stimuli-responsive liposomes such as pH-, redox- and light-responsive
liposomes can mediate precise release of DOX at tumor site. These dis-
cussions reveal that liposomes are promising carriers in field of DOX
delivery and cancer suppression.

According to Table 6, anumber of DOX liposomes are being currently
used in treatment of cancer patients. Therefore, milestone progress has
been made in treatment of patients, but there are still some challenges
that should be considered for clinical applications. The major benefit of
liposomal nanostructures is that they carry low concentration of DOX
that prevents chemoresistance and reduces side effects. Moreover, li-
posomes provide sustained release of DOX. Although clinical studies
have shown good efficacy of DOX-loaded liposomes in treatment of
cancer patients, the optimal dosage still should be determined and how
many times (frequency) these nanoparticles should be administered,
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since they can prolong circulation of DOX in bloodstream and therefore,
the administration repeats decrease compared to DOX alone. Another
challenge is that some of the researches cannot be translated into clinic,
since the production of such liposomes (especially tumor targeted and
stimuli-responsive liposomes) is time-consuming and expensive, and
therefore, future studies should focus on clinically scalable liposomes for

DOX in cancer therapy.
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