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A B S T R A C T   

Nanomedicine is a field that combines biology and engineering to improve disease treatment, particularly in 
cancer therapy. One of the promising techniques utilized in this area is the use of micelles, which are nanoscale 
delivery systems that are known for their simple preparation, high biocompatibility, small particle size, and the 
ability to be functionalized. A commonly employed chemotherapy drug, Doxorubicin (DOX), is an effective in
hibitor of topoisomerase II that prevents DNA replication in cancer cells. However, its efficacy is frequently 
limited by resistance resulting from various factors, including increased activity of drug efflux transporters, 
heightened oncogenic factors, and lack of targeted delivery. This review aims to highlight the potential of mi
celles as new nanocarriers for delivering DOX and to examine the challenges involved with employing chemo
therapy to treat cancer. Micelles that respond to changes in pH, redox, and light are known as stimuli-responsive 
micelles, which can improve the targeted delivery of DOX and its cytotoxicity by facilitating its uptake in tumor 
cells. Additionally, micelles can be utilized to administer a combination of DOX and other drugs and genes to 
overcome drug resistance mechanisms and improve tumor suppression. Furthermore, micelles can be used in 
phototherapy, both photodynamic and photothermal, to promote cell death and increase DOX sensitivity in 
human cancers. Finally, the alteration of micelle surfaces with ligands can further enhance their targeted delivery 
for cancer suppression.   

1. Introduction 

Doxorubicin (DOX) is a routinely prescribed antitumor drug in 
cancer treatment (Al-Malky and Al HarthiA.-M.M.J.J.o.O.P.P. Osman, 

2020). DOX has anticancer properties against hematological malig
nancies such as leukemia and lymphoma, and solid tumors, such as 
breast cancer, thyroid cancer, and osteosarcoma among others (Moha
jeri and A.J.C.r.i.o.h. Sahebkar, 2018; Morabito et al., 2004). DOX is a 
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widely used and well-established antitumor drug and a key component 
in many chemotherapy regimens. There is growing evidence that 
chemotherapy regimens that include DOX are highly effective and su
perior to those that do not include anthracyclines (Morabito et al., 2004; 
Singal et al., 2000; Novitzky et al., 2004). DOX, an anthracycline, is 
isolated from the pigment of fungus Streptomyces peucetius var. Caesius. 
Four anthraquinone rings are connected to one amino sugar moiety in its 
chemical structure (Morabito et al., 2004). In 1950, the antitumor ac
tivity of DOX was first revealed, and its application as an antitumor 
compound was approved in 1963 (Mohajeri and A.J.C.r.i.o.h. Sahebkar, 
2018; Morabito et al., 2004). Although other derivatives of DOX were 
also discovered, DOX has been the most popular antitumor compound 
due to its high efficacy at low doses (Wallace et al., 2020). The anti
cancer activity of DOX is attributed to its capacity to interfere with DNA 
replication and transcription. DOX facilitates multiple roles, including 
intercalation with DNA, preventing DNA unwinding, and topoisomerase 
II suppression (Hortobágyi, 1997; Aubel-Sadron and Londos-Gagliardi, 
1984; Pang et al., 2013; Tarr and van Helden, 1990; de Jong et al., 
1990; Ashrafizadeh et al., 2021a; Mirzaei et al., 2022a). Despite the 
benefits of DOX in cancer therapy and its ability to impair tumor pro
gression, the application of DOX, especially in clinics, is faced with 
several challenges and impediments, urging researchers to find solu
tions. The first difficulty is related to the concentration-dependent 
toxicity of DOX and its negative impacts on other organs and tissues 
of the body, especially the heart (Rawat et al., 2021). Another problem is 
the lack of specific delivery of DOX to tumor tissues, which significantly 
reduces its potential in cancer suppression. The most significant obstacle 
with DOX, however, is the development of resistance, such that cancer 
cells adopt alternate mechanisms to cause chemoresistance. When 
resistance develops, the susceptibility of cancer cells to DOX falls sub
stantially. Thanks to advances in biology and genetics, the underlying 
mechanisms and pathways that lead to DOX resistance in cancers can 
now be understood. Some of the key factors contributing to DOX resis
tance include abnormal expression of epigenetic factors, gene muta
tions, increased activity of drug efflux transporters such as 
P-glycoprotein (P-gp), pro-survival autophagy, and inhibition of 
apoptosis (Mirzaei et al., 2021a; Yue et al., 2021; Das et al., 2021; Taheri 
et al., 2022; Taheriazam et al., 2023). 

Nanobiotechnology has emerged as a cutting-edge interdisciplinary 
field for the treatment of diseases in recent years, including cancer and 
oncology. Nanotechnology has a variety of applications in these fields, 
including the imaging and diagnosis of cancer through the design of 
nanoplatforms that can detect cancer biomarkers for early detection 
(Meng et al., 2016; Peng et al., 2014; Nosrati et al., 2022a; Abbasi et al., 
2022). Moreover, nanotechnology has proven to be a promising 
approach for delivering drugs in cancer therapy. The use of nanoplat
forms provides the advantage of targeted delivery of anticancer agents 
to tumor tissues, resulting in increased internalization (Hashemi et al., 
2022; Jan et al., 2022; Salehiabar et al., 2023). Furthermore, because 
some are stimuli-responsive and targeted, they help to reduce chemo
resistance (Ashrafizadeh et al., 2022a). Various anticancer drugs have 
been delivered by nanostructures as part of a chemotherapeutic 
regimen, such as docetaxel, paclitaxel, topoisomerase inhibitors, and 
cisplatin among others, to improve efficacy in cancer therapy (Ashrafi
zadeh et al., 2022b; Cheng et al., 2021; Chen et al., 2021a; Yang et al., 
2021a). 

The clinical use of nanoparticles is contingent on their biocompati
bility, and lately, there has been a growing emphasis on using envi
ronmentally friendly substances like chitosan to modify nanostructures 
for enhanced biocompatibility. Among the nanostructures that have 
received approval for drug delivery are lipid-based nanoparticles, which 
are deemed safe for long-term use (Khan et al., 2022; Cao et al., 2022; 
Ertas et al., 2021). The purpose of this paper is to examine the function 
of micellar nanoparticles in the administration of DOX in cancer treat
ment. We will first provide a description of micelles and their biomedical 
application and then describe stimuli-responsive micelles such as pH-, 

redox- and multi-functional micelles for DOX delivery. Next, we explore 
the potential of micelles to deliver DOX in conjunction with other 
medications and genetic materials, as well as the impact of surface 
modification on enhancing the specificity of micelles towards cancerous 
tissue. The clinical use of micelles and their role in phototherapy are also 
discussed. 

2. Micelles: basics and biomedical applications 

Micelles are colloidal dispersions with particle sizes between 5 and 
100 nm. Their size depends on the head group type and alkyl chain 
length (Kabanov et al., 1992; Torchilin, 2007; Schramm and StasiukD.G. 
J.A.R.S.C. Marangoni, 2003; Kellermann et al., 2004). Aggregation of 
surfactant molecules in micelles is facilitated by cationic, anionic, 
zwitterionic, or non-ionic groups (Loppinet and Monteux, 2016). The 
tail of micelles has a non-polar hydrocarbon chain that can be embedded 
in the center, forming a ball like structure in aqueous solutions to pro
duce micelles (Chen et al., 2016; Jia et al., 2016). Fatty acids, salts of 
fatty acid (soap), phospholipids, and similar structures can be utilized 
for the generation of micelles. When lipids are used in the formation of 
micelles, nanostructures may have a lower critical micelle concentration 
(CMC) (Patil et al., 2016). The amphiphilic molecules in aqueous solu
tion undergo self-assembly to generate micelles containing both hy
drophilic and hydrophobic sections (Kabanov et al., 1995; Papaioannou 
et al., 2016; Shah et al., 2016). When the concentration of amphiphiles 
in a solution decreases, they turn into individual monomers. However, 
when the concentration is high, self-assembly and clustering takes place, 
resulting in the formation of micelles (Torchilin, 2007). The formation 
of micelles is dependent on a certain concentration, referred to as the 
crucial micelle concentration (CMC). Above the CMC, the dehydration 
of hydrophobic tails results in the self-assembly and aggregation of 
amphiphiles into micellar nanoparticles, held together by van der Waals 
bonds (Torchilin, 2007). In the final structure of a micelle, there is a 
hydrophilic shell that can connect with the water surrounding micelles 
via hydrogen bonds (Ferreira et al., 2016). The shape of micelles can 
vary, including spheres, rods, tubes, vesicles, and sheets, and is depen
dent on factors such as the type of solvent, length of the blocking chain, 
temperature, and nature of the blocking agents (Jones and Leroux, 1999; 
Giorgio et al., 2016; Pottage et al., 2016). 

The shape of micelles can vary, including spheres, rods, tubes, ves
icles, and sheets, and is dependent on factors such as the kind of solvent, 
length of the blocking chain, temperature, and nature of the blocking 
agents. Micelles have gained significant interest in the management of 
diseases. For example, researchers have produced pH-sensitive micellar 
nanostructures for oral administration of insulin to treat diabetes mel
litus. These nanostructures have a high level of biocompatibility, with 
insulin being incorporated into their core (Hu et al., 2019). Besides, oral 
delivery of berberine by micelles has been effective in mediating hy
poglycemic levels and improving diabetes mellitus (Kang et al., 2020). 
In brain disorders such as Alzheimer’s disease, micelles have been of 
interest in reducing oxidative stress and improving glycometabolic ac
tivity (Zhang et al., 2022a). Furthermore, multifunctional 
peptide-assembled micelles have led to a considerable decrease in ROS 
and amyloid-beta levels in brain disorder treatments (Lei et al., 2021). 
The function and application of micelles in cancer have been of interest 
in recent years. Prodrug polymeric micelles can be used to mediate 
tumor microenvironment remodeling and to integrate cancer-associated 
fibroblasts in order to inactivate them and improve chemotherapy po
tential (Zheng et al., 2021). In addition, micelles can be used for imaging 
cancer and for simultaneous chemotherapy. For the administration of 
paclitaxel, hypoxia-sensitive micelles have been devised. As well, 
quantum dots loaded in the core of micelles modified with folic acid can 
increase their specificity towards tumor cells (Xu et al., 2022). One 
advantage of using micelles is their ability to deeply penetrate tumors. 
Loading docetaxel in micelles resulted in the formation of nanoparticles 
with a particle size of 21.9 nm, which can facilitate a prolonged delivery 
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of docetaxel using the blood circulation cycle (Yang et al., 2022). Mi
celles can increase the specificity of drugs to induce apoptosis and ROS 
to enhance cytotoxicity against tumor cells (Chary et al., 2022). 
TPGS-loaded triphenyltin micelles can increase the expression level of 
p53 to stimulate apoptosis in breast tumor cells (Singh et al., 2022). 
Besides, by combining chemotherapy and phototherapy within micelles, 
a synergistic cancer treatment can be achieved (Yang et al., 2021b). 
Surface-modified and stimuli-responsive micelles have enhanced cancer 
treatment (Cheng et al., 2022). In next sections, we describe the function 
of micelles in the delivery of DOX. 

3. Nanomaterials in delivery of drugs for cancer therapy 

Numerous research has utilized nanoparticles for drug delivery, 
which has proven to be an effective strategy. Before analyzing the 
function of micelles in DOX distribution, it is preferable to consider the 
function of nanostructures in drug delivery. The pH- and thermos- 
sensitive nanostructures can mediate cisplatin delivery and it elevates 
internalization in tumor cells. Moreover, they mediate controlled release 
of cisplatin and they suppress tumorigenesis up to 64% (Perera et al., 
2022). The cationic lipid nanostructures can be co-loaded with pacli
taxel and perfluorohexane, and exposure to irradiation induces release 
of cargo to cause chemotherapy (Du et al., 2022). The delivery of drugs 
by nanostructures can increase potential of drugs in tumor suppression 
and on the other side, it prevents development of drug resistance. It has 
been reported that co-loading of Rho 123 and MMC on mesoporous silica 
nanostructures promotes their accumulation and internalization in 
cancer cells, mediates their sustained release and elevates their cyto
toxicity that are beneficial in suppressing multidrug resistance (Igaz 
et al., 2022). The loading of gemcitabine on polymeric nanostructures 
results in an increase in cellular uptake of this drug and its modification 
with EGFRvIII selectively targets ovarian tumor cells (Bhattacharya 
et al., 2022). Utilizing nanoparticles that have been modified with 
membranes is one of the recent technologies for cancer treatment de
livery. The pH-responsive liposomes have been modified with cancer 
cell membrane and then, two drugs including RA-V and BMS-202 have 
been loaded in nanostructures to increase internalization in tumor cells, 
blood circulation time, apoptosis induction and increasing targeting 
ability of cancer cells (Yao et al., 2022). More importantly, nanocarriers 
utilized for delivery of drugs are biocompatible and they can also pro
vide simultaneous imaging of cancer cells (Li et al., 2022a). The crossing 
over biological barriers can be accelerated by nanostructures and due to 
increasing local level of drugs at cancer site, nanostructures can suppress 
drug resistance in cancer (Guo et al., 2022). Moreover, nanoparticles can 
reduce IC50 of drugs and they increase ability in cell death induction 
(Patil et al., 2022). Interestingly, co-delivery of chemotherapy drug and 
siRNA can increase sensitivity of tumor cells and impair progression 
(Zhang et al., 2022b). Therefore, increasing evidence is line of using 
nanoparticles for delivery of drugs in potent cancer therapy (Li et al., 
2022b; Assali et al., 2022; Pirali-Hamedani et al., 2022). Although it is 
not related to delivery of DOX, it is noteworthy that nanoparticles may 
be utilized to remove DOX (Sadrnia et al., 2021) and biosensors to 
measure its concentration (Alavi-Tabari et al., 2018). 

4. Stimuli-responsive micelles 

4.1. pH sensitive 

The tumor microenvironment is a unique space with differing tem
perature, pH, and enzyme content. Redox balance is impaired in the 
tumor microenvironment. Aerobic glycolysis and shifts from oxidative 
phosphorylation to other metabolism types are reasons for acidic pH 
levels in tumor microenvironment (Entezari et al., 2023). With the aim 
of delivering drugs for cancer therapy, nanostructures can be designed 
to be pH-responsive due to their low pH. This is done by creating 
acid-sensitive bonds within the nanostructures, making them 

degradable in the acidic environment of tumors (Zhuo et al., 2020; 
Kanamala et al., 2016; Yan and Ding, 2020). Nanoscale delivery systems 
relying on pH use protonation and ionization as their foundation, with 
ionizable groups being incorporated into the nanoparticle design. When 
the pH is low and acidic, protonation or charge reversal takes place, 
leading to changes in the hydrophobic and hydrophilic properties of the 
nanoparticles, resulting in the release of the cargo. Amino, carboxyl, 
sulfonate, and imidazolyl groups are among the ionizable groups to 
consider when designing micelles (Kanamala et al., 2016; Yan and Ding, 
2020; Du et al., 2015). This section examines the function of 
pH-sensitive micelles in DOX transport. 

It has been proven in vitro and in vivo that pH-sensitive micelles in
crease DOX’s anticancer activity. A significant benefit of pH-sensitive 
micelles is their small size even after incorporating the drug, DOX. In 
an experiment, pH-sensitive micelles were created using DSPE-PEG2000 
and oleic acid and loaded with DOX. The analysis of these nanoparticles 
showed a low size of 13 nm, a neutral zeta potential, and a high ability to 
encapsulate the drug. Compared to pH insensitive micelles devoid of any 
drug, the pH-sensitive DOX-loaded micelles showed greater anticancer 
activity and fewer side effects than treatment with DOX alone (Cav
alcante et al., 2021). The pH sensitivity of micelles depends on the 
establishment of a bond in structure of micelles that can be degraded 
upon exposure to low and mild acidic pH of tumor microenvironment. 
Boronic acid and its derivatives have been used for developing boronic 
ester bonds that are pH-sensitive by interacting with compounds con
taining 1,2- or 1,3-diol structures. Therefore, pH-sensitive nano
structures based on boronic acid have been designed for site-specific 
delivery of drugs to suppress cancer. An example of this process can be 
seen with the conjugation of mPEG-PCL to CTP to facilitate 
macro-initiation, followed by the attachment of PDMA to PVBA and to 
the end of mPEG-PCL. The resulting mPEG-PCL-PDMA and 
mPEG-PCL-PVBA are then combined to form polymeric micelles in an 
aqueous solution, and DOX is loaded into these micelles. When this 
compound is administered to the tumor site, it leads to an accumulation 
both in vitro and in vivo, resulting in a significant boost in anticancer 
activity (Wang et al., 2020). To construct pH-sensitive micelles for the 
delivery of DOX, the bond between DOX and the micelle must degrade at 
the acidic condition of the tumor microenvironment. PLL 
(CB/DOX)-b-PMPC based polymeric micelles are a promising option for 
delivering DOX in cancer therapy. The poly (L-lysine) block can be 
utilized to conjugate DOX through imine bonds, and the polymeric mi
celles can release DOX at the tumor site when exposed to a mildly acidic 
pH (as shown in Fig. 1) (Ma et al., 2018). One of the important aspects of 
micelles is their biocompatibility for the delivery of DOX in cancer 
therapy. It is well documented that polymeric micelles can increase 
DOX’s cytotoxicity against tumor cells via delivery at tumor site and pH 
responsive drug release. Furthermore, because of the site-specific de
livery of DOX, side effects are reduced. The question related to the fate of 
polymers in the body is also solved, as micelles are biocompatible and 
can be degraded in the body without causing toxicity (Chen et al., 
2021b). 

One crucial aspect of improving the delivery of DOX using pH- 
sensitive micelles is optimizing their sensitivity and specificity 
through modification. Surface modification of the micelles with ligands 
has been demonstrated to significantly boost their potential in deliv
ering DOX and improving anticancer activity both in vitro and in vivo. 
Several ligands, including folate and peptides, have been used to modify 
the surface of micelles to enhance their ability for site-specific delivery 
(Yang et al., 2021c; Zhu et al., 2021a; Guan et al., 2017). Surface 
modification of micelles is discussed in Section 7. Micelles are comprised 
of biodegradable polymers and considered promising factors in the de
livery of DOX in cancer therapy. Other hydrophobic medications are 
also capable of being packed into the interior of micelles. Their synthesis 
is affordable, and their biocompatibility increases the blood circulation 
duration of anticancer drugs (Biswas et al., 2016; Xin et al., 2016; Chen 
et al., 2015; Jaskula-Sztul et al., 2016). Besides, micelles can provide 
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enhanced permeability and retention (EPR) to promote the accumula
tion of drugs at tumor site (Xin et al., 2016; Xu et al., 2015; Yin and Y.H. 
J.E.j.o.p. Bae, 2009; Bastakoti et al., 2013). In an experiment, 
dextran-stearic acid (Dex-SA) and dextran-histidine (Dex-His) conju
gated polymers were used to synthesize pH-sensitive micelles to deliver 
DOX at tumor site. Drug release was measured at 76% at an acidic pH, 
while it was 56% at physiological pH. The nanoparticles effectively 
increased the uptake of DOX by anticancer agents and suppressed tumor 
progression (Jafarzadeh-Holagh et al., 2018). Multi-drug resistance 
(MDR) severely restricts the potential of anticancer therapies (Tóth 
et al., 2020; Tan et al., 2019; Wu et al., 2014). ATP-binding cassette 
transporters such as P-glycoprotein (P-gp) are involved in MDR 
(Schinkel and J.W.J.A.d.d.r. Jonker, 2012; Kathawala et al., 2015; 
Callaghan et al., 2014; Sosnik, 2013). TPGS is an inhibitor of P-gp and 
has been approved by the FDA for overcoming MDR via reducing ATP 
levels and preventing ATPase activity (Zhang et al., 2012a, 2012b; 
Choudhury et al., 2017). Furthermore, TPGS can mediate ROS genera
tion, apoptosis induction, and DNA damage to reduce cancer viability 
(Yang et al., 2018a). In a study, star-shaped TPGS copolymers were 
employed to synthesize pH-sensitive micelles for the delivery of DOX. 
The application of these TPGS-based micelles in breast cancer therapy 
resulted in high stability, long-term storage, efficient internalization into 
cancer cells, and inhibition of multidrug resistance (MDR), as demon
strated in Fig. 2 (Xu et al., 2021). According to these findings, 
pH-sensitive micelles are viable carriers for site-specific DOX delivery 
(Guo et al., 2021; Yu et al., 2021; Gao et al., 2019). 

4.2. Redox sensitive 

Redox species are potential contributing factors in the establishment 
of stimulus-responsive nanostructures (Li et al., 2020). Tumor cells 
produce more reactive oxygen species (ROS) than normal cells due to 
mitochondrial dysfunction (Lee et al., 2013). Glutathione (GSH) is 
reduced biothiol that is found in living organisms (Estrela et al., 2006), 
and its levels can reach up to 2–10 mM in cancer cells, 7–10 times 
greater than normal cells (Zhong et al., 2020). Therefore, both ROS and 
GSH are important players in tumor microenvironment. Studies have 
demonstrated that various molecular groups are responsive to GSH and 
ROS, including disulfide, ditelluride, metal ions, thioketal, and bilirubin, 
among others, which can be used in developing stimulus-responsive 
nanocarriers (Yang and Sun, 2022). 

Redox-responsive polymeric micelles can be prepared to deliver DOX 
in cancer therapy and imaging. Polymeric micelles are synthesized from 

mPEG-ss-Tripp, which are redox-sensitive with a particle size of 105 nm. 
When GSH is present, the disulfide bonds of micelles are cleaved, 
releasing DOX at tumor site and suppressing tumor progression in xe
nografts (Sun et al., 2021). Indomethacin (IND) is considered an 
anti-inflammatory compound that can suppress MDR and GSH to pre
vent MRP-mediated chemoresistance (Duffy et al., 1998). IND impairs 
MRP1 promoter activity and decreases MRP1 expression (Matsunaga 
et al., 2006). Accordingly, DOX-loaded redox-sensitive micelles have 
been designed based on dextran and IND with a diameter of 50 nm. 
There is a disulfide bridge between IND and dextran, which can be 
degraded by GSH to release drug and suppress breast cancer progression 
while lowering the development of drug resistance (Zhou et al., 2017). 
Both hydrophilic and hydrophobic segments are found in amphiphilic 
block copolymers, which can be used for the development of nano
particles (Chen et al., 2017; Cheng et al., 2016; Chu et al., 2016). PEG 
and PLGA are among the most widely used polymers in the development 
of drug delivery systems. PEG is utilized to enhance internalization and 
extend blood circulation time, and to prevent opsonization. PLGA, on 
the other hand, is biodegradable and is efficiently cleared from the body 
(Chen et al., 2017; Avgoustakis et al., 2003; Zhang et al., 2014). Poly
meric micelles based on mPEG-PLGA micelles have been used to deliver 
DOX in cancer therapy. These micelles are redox-responsive with a 
particle size of 123.9 nm. The encapsulation efficiency of micelles was 
found to be 54.9%, and when exposed to GSH, it resulted in the release 
of 73.94% of DOX. These nanostructures enhanced the accumulation of 
DOX in tumor cells and increased cervical cancer suppression (Fig. 3) 
(Birhan et al., 2019). 

It has been reported that pro-inflammatory cytokines and growth 
factors play crucial role in cancer metastasis (Kozłowski and Kozłow
skaJ.J.P.H.i.M.D. Kocki, 2015; Su et al., 2015). For instance, over
expression of cyclooxygenase-2 (COX-2) increases the viability and 
proliferation of tumor cells (Güler et al., 2016; Sun et al., 2017). Besides, 
inflammatory factors can facilitate angiogenesis induction and promote 
cancer metastasis (Regulski et al., 2016; Yu et al., 2016). As such, 
anti-inflammatory factors, including ibuprofen, have been utilized to 
suppress cancer progression (Said-Elbahr et al., 2016). An effort was 
made to develop redox-responsive hyaluronic acid-ibuprofen prodrug 
micelles for the administration of DOX to inhibit breast cancer metas
tasis. The use of ibuprofen was based on its ability to downregulate 
COX-2 and suppress metastasis. The ibuprofen was conjugated to hyal
uronic acid through disulfide bonds, which then self-assembled for the 
delivery of DOX. Upon redox stimulation, the ibuprofen was released 
and, in conjunction with hyaluronic acid, delivered DOX to inhibit 

Fig. 1. (A) The self-assembly of DOX-loaded micelles and drug release at low pH level (pH 5.5); (B) Evaluation of apoptosis induction via TUNEL staining. Reprinted 
with permission from Elsevier (Ma et al., 2018). 
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breast cancer invasion (Chai et al., 2020). In addition, redox-responsive 
micelles have been used for the co-delivery of DOX and paclitaxel (Yang 
et al., 2019). Paclitaxel prevents depolymerization of microtubules to 
suppress cancer (Ashrafizadeh et al., 2021b; Mahabady et al., 2022). 
Furthermore, DOX also impairs topoisomerase activity for tumor sup
pression. The combination of DOX and paclitaxel, as well as their 
co-delivery by redox-responsive micelles, has been shown to have syn
ergistic effects on tumor suppression. Even with the double dose of 
drugs, the particle size of nanostructures remains small (98.5 nm) (Yang 
et al., 2019). Heparosan (HEP), a linear polysaccharide with potential 
use in biological pharmacy, has garnered more attention in recent years 
(DeAngelis Paul, 2013). HEP has structural similarities to heparin and 
heparan sulfate and is isolated from fermentation broth, which reduces 
the risk of contamination (Xu et al., 2011; Wu et al., 2015; Zhang et al., 
2012c). In an experiment, HEP and deoxycholic acid conjugates (HSDs) 
were used for developing stable micelles with 100% DOX release at a 10 
mM concentration of GSH. These nanostructures are biocompatible and 
can suppress tumor progression by enhancing DOX’s cytotoxicity, which 
is internalized through clathrin-mediated endocytosis in 

laryngopharyngeal tumor cells (Fig. 4) (Sun et al., 2018). 

4.3. Light responsive 

Treatment of osteosarcoma with DOX, a popular chemotherapy 
agent, has generated considerable interest. The efficacy of DOX in sup
pressing osteosarcoma is not only low, but the development of resistance 
to DOX is also high (Guan et al., 2021; Li et al., 2021). In an experiment, 
light-responsive polymeric micelles for DOX delivery were created by 
coating them with PEG to avoid protein absorption and the formation of 
a protein corona on the nanoparticle surface. When exposed to ultravi
olet radiation, the bond between DOX and PEG (amide bond) is dis
rupted, allowing for the release of DOX from the micelles to inhibit the 
progression of osteosarcoma (Chen et al., 2021c). Recently, there has 
been a shift in focus towards the development of light-responsive 
nanostructures utilizing 2-nitrobenzyl-containing UV-sensitive poly
mers and UCNPs, to achieve a high level of control over drug release (Liu 
et al., 2017a). Exposure to ultraviolet light leads to a photochemical 
reaction in 2-nitrobenzyl derivatives that disrupts 

Fig. 2. (A) The preparation of micelles and their ability in apoptosis induction in tumor cells; (B–E) Suppressing growth of breast tumor cells. Reprinted with 
permission from Elsevier (Xu et al., 2021). 
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hydrophilic-hydrophobic balance and cleaves photocaged linkages for 
drug delivery (Wang et al., 2014). Besides, conversion of NIR light to 
ultraviolet/visible light can be facilitated by UCNPs to mediate photo
chemical reactions and remote regulation (Yao et al., 2016). As part of 
the effort to improve drug delivery and bioimaging, NIR-light-activated 
hybrid micelles were developed for DOX delivery. These nano
architectures are comprised of UCNPs, DOX, and 
ultraviolet-light-responsive amphiphilic block copolymers, allowing for 

both imaging and chemotherapy. Upon exposure to NIR radiation, the 
UCNPs convert the NIR light into ultraviolet light, triggering a photo
reaction process that releases DOX. This release of DOX is crucial for 
both imaging and the degradation of the micelles to combat cancer 
(Fig. 5) (Chen et al., 2020). 

Light-responsive micelles are used for co-delivery of DOX with other 
agents. Polymeric micelles are synthesized from 3-hydroxyflavone (3- 
HF) derivatives and an ether linker. The photo-responsive feature of 

Fig. 3. (A–B) Synthesis method of micelles, DOX loading and internalization in tumor cells; (C–E) The cytotoxicity of DOX-loaded micelles against tumor cells. 
Reprinted with permission from Elsevier (Birhan et al., 2019). 

Fig. 4. (A) DOX loading in GSH-responsive micelles and endocytosis uptake by tumor cells; (B–D) DOX-loaded GSH-responsive micelles in internalization in tumor 
cells. Reprinted with permission from Elsevier (Sun et al., 2018). 
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polymeric micelles results from the nitrobenzyl ether group and 3-HF 
derivatives, which are used for carbon monoxide and formaldehyde 
release. Furthermore, photo-responsive polymeric micelles are prom
ising for the delivery of DOX and providing a sustained release to sup
press tumor progression (Zheng et al., 2022). Diels-Alder (DA) click 
reaction is one of the methods that can be used for the synthesis of 
polymeric micelles and for developing light-responsive nanocarriers 
(Rammal et al., 2021). Initially, indocyanine green (ICG) is loaded, and 
then DOX is loaded into polymeric micelles through a crosslinking re
action. Upon exposure to NIR light, DOX is released, leading to the 
impairment of cancer cell survival (Yadav et al., 2021). Therefore, 
light-responsive nanocarriers are ideal candidates for DOX delivery 
because they provide much better control over drug release when 
compared to other nanoparticles that are not sensitive to endogenous 
stimuli. 

4.4. Multifunctional 

Efforts have been made to create multifunctional nanocarriers based 
on micelles for efficient delivery of DOX. Light- and pH-sensitive mi
celles were created using PEG-b-PEDNB-b-PEG through sequential thiol- 

acrylate Michael addition polymerization. The o-nitrobenzyl linkages in 
these micelles are light-cleavable, while the acid-labile β-thiopropionate 
linkages are present in the structure of PEG-b-PEDNB-b-PEG. This tri
block copolymer can self-assemble into micellar nanoparticles, making 
it suitable for DOX delivery. With both o-nitrobenzyl and β-thio
propionate linkages, these micelles can degrade in response to light and 
pH, releasing DOX for the suppression of lung cancer (Jin et al., 2014). 
Previous studies have shown that DOX-loaded micelles can be designed 
to respond to both internal and external stimuli. In one experiment, pH- 
and GSH-sensitive micelles were created by conjugating them with HA 
and MP. The anti-CD44 antibody prevented the internalization of these 
nanoparticles in cancer cells, indicating that HA modification is crucial 
for the accumulation of micelles. These pH- and GSH-sensitive micelles 
release DOX at the tumor site, leading to cell cycle arrest. Furthermore, 
DOX-loaded micelles effectively eliminate cancer stem cells in colon 
cancer (Fig. 6) (Debele et al., 2018). 

In cancer treatment, multifunctional micelles have been found to be 
beneficial in providing both chemotherapy and immunotherapy. An 
experiment created chitosan-coated HA micelles for the delivery of DOX 
and siRNA-PD-L1 in a combination of chemotherapy and immuno
therapy. These biocompatible micelles had a particle size of 180 nm. The 

Fig. 5. (A and B) Preparation of photoreactive-DOX-loaded micelles for cancer therapy and ability of DOX release after irradiation in cancer therapy. Reprinted with 
permission from Wiley (Chen et al., 2020). 
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HA modification enabled the uptake of micelles in breast tumor cells 
through binding with the CD44 receptor. By silencing PD-L1, these mi
celles enhanced the infiltration of CD4+/CD8+ T cells in the tumor 
microenvironment. The release of the cargo from these micelles was pH- 
and redox-sensitive, which facilitated the site-specific delivery of DOX 
and siRNA (Song et al., 2022). The role of stimuli-responsive micelles in 
DOX delivery and cancer suppression is demonstrated in Table 1. 

5. Micelles in doxorubicin and drug combination delivery 

Efforts have been made to increase the efficacy of DOX in the 
treatment of cancer by combining it with other anticancer drugs to 
combat DOX resistance and boost tumor suppression. Nevertheless, 
adequate delivery of both drugs to the tumor site is essential. In order to 
do this, nano-scale delivery methods, such as micelles, have been 
designed for the co-delivery of DOX and anticancer drugs. An amphi
philic triblock copolymer was created through a two-step ring-opening 

Fig. 6. (A and B) Synthesis method of micelles and their mechanism of action in cells; s (C–E) The efficacy of DOX-loaded micelles in vivo in tumor suppression. 
Reprinted with permission from ACS (Debele et al., 2018). 

Table 1 
The role of stimuli-responsive micelles in DOX delivery.  

Nonvehicle Stimulus Cancer type Remark Ref 

Dextran-based micelles Redox- 
responsive 

Breast cancer DOX release in a reducing environment 
Suppressing tumor progression in vitro and in vivo 
High stability in physiological environment and drug release at tumor 
microenvironment 

Zhou et al. (2017) 

Prodrug micelles pH-responsive Breast and 
cervical cancers 

Preparation of micelles from 4-carboxy benzaldehyde-grafted poly (L- 
lysine)-block-poly (methacryloyloxyethyl phosphorylcholine) (PLL 
(CB/DOX)-b-PMPC) copolymer 
Drug release at tumor pH level 
High suppression of cancer cells 

Ma et al. (2018) 

Prodrug micelles pH-responsive Breast and lung 
cancers 

Co-delivery of DOX and paclitaxel for synergistic cancer therapy 
110.5 nm particle size 
Drug release at low pH levels 

Jiang et al. (2020) 

Polymeric micelles pH-responsive Breast cancer Preparation of micelles from DSPE-PEG2000, oleic acid, and DOX 
Dimeter of 13 nm 
Zeta potential near to neutrality 
Suppressing tumor growth 

Cavalcante et al. (2021) 

PEGylated nanoparticles Reduction- 
responsive 

Breast cancer Intracellular accumulation and release of drug upon reaching to cancer 
site 
Reduction-sensitive release of cargo and inhibiting tumorigenesis 

Wang et al. (2021a) 

Dextran-Stearic Acid (Dex-SA) and 
Dextran-Histidine (Dex-His) 
conjugated polymeric micelles 

pH-sensitive Glioblastoma Drug release at low pH level, increased cellular uptake and anti- 
proliferative activity 

Jafarzadeh-Holagh 
et al. (2018) 

Targeted poly-peptide nanomicelles pH-responsive Breast cancer Particle size of 121.64 nm 
Release of 73.52% of drug at 24 h in pH 4.5 
Apoapsis induction 
Reducing cancer proliferation 

Zhu et al. (2021a)  
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polymerization followed by hydrophobic interactions, which allowed 
for DOX encapsulation by micelles. Then, cisplatin was loaded into the 
micelles via Pt-carboxyl coordination interactions, which boosts the 
micelles’ stability and inhibits DOX release at physiological pH. Upon 
internalization in the endosome/lysosome, the low pH environment 
weakens the Pt-carboxyl coordination interactions, leading to the 
release of DOX and cisplatin from the micelles and tumor suppression 
(Gao et al., 2020). The anticancer activity of cisplatin is based on the 
generation of adducts with DNA that led to DNA damage and apoptotic 
cell death. However, the potential of cisplatin in cancer chemotherapy 
has decreased due to development of resistance (Mirzaei et al., 2021b). 
Therefore, the DOX and cisplatin combination has the potential to suc
cessfully battle cancer. Redox-sensitive micelles have been designed for 
the delivery of DOX and cisplatin in cancer therapy. The process in
volves conjugating DOX to carboxymethyl chitosan, which then 
self-assembles into micelles with a particle size of 274 nm. The release of 
the cargo from these micelles was shown to be responsive to GSH, 
leading to the uptake of DOX and cisplatin and hindering tumor growth 
(Zhang et al., 2017). Similar to cisplatin, docetaxel is also widely utilized 
in cancer therapy, and its mechanism of action is based on preventing 
the depolymerization of microtubules and mediating cell cycle arrest 
(Ashrafizadeh et al., 2021b). The combination of DOX and docetaxel and 
their delivery through micelles is crucial in cancer treatment. Micelles 
made of poly (lactic acid), poly (ethylene glycol), and folate (PLA-
PEG-FOL) have been developed to carry both docetaxel and DOX. The 
addition of folate to the micelles enhances their targeting to tumor cells. 
The synergistic effects of these drugs have proven to be a valuable 
contribution to cancer therapy (Hami et al., 2017). Micelles composed of 
mPEG-PCL were conjugated with both DOX and docetaxel using 
redox-responsive disulfide bonds. The resulting particles, with a size of 
223.7 nm, were formed by mixing DOX- and docetaxel-loaded micellar 
nanoparticles. These micelles exhibit high cellular uptake in MCF-7 
cells, effectively suppress tumor progression, and demonstrate syner
gistic effects through the co-delivery of both docetaxel and DOX (Fig. 7) 
(Wu et al., 2018). 

Micelle-mediated co-delivery of DOX and chemotherapeutic drugs is 
effective in suppressing cancer (Jiang et al., 2020; Huang et al., 2016; 
Duong and Yung, 2013; Leonhard et al., 2015). More importantly, nat
ural products have been used to increase the efficacy of chemothera
peutic agents in cancer treatment (Chavda et al., 2021). Since natural 
products have poor bioavailability, nanoscale delivery systems can be 
developed to aid with their delivery (Ahmadi et al., 2019). Micelles are 
potential alternatives for natural product delivery with DOX in cancer 
treatment. Derived from Curcuma longa, curcumin, is effective in cancer 

therapy because it can induce apoptosis, reduce the expression of 
oncogenic factors, and prevent tumor metastasis (Ashrafizadeh et al., 
2020a, 2020b, 2020c). Poly (ethylene glycol)-block-poly (lactide) (PEG 
(2 k)-PLA(5 k) amphiphilic copolymeric micelles are synthesized and 
then loaded with DOX and curcumin. This combination showed superior 
activity in preventing the growth of breast tumor cells compared to DOX 
and curcumin alone. Drug-loaded micelles reduced the efflux of DOX in 
breast tumor cells by downregulating P-gp and suppressing ATP activity 
to reverse drug resistance (Lv et al., 2016). Resveratrol is another nat
ural product of interest due to its cardioprotective features (Gran et al., 
2021; Wang et al., 2022a). Resveratrol can be isolated from natural 
sources, including grapes, peanuts, and blueberries, in a biologically 
active form known as trans-resveratrol (Gran et al., 2021; Mirzaei et al., 
2022b). Recently, delineating the role of resveratrol in cancer therapy 
and drug sensitivity has been a key focus (Mirzaei et al., 2022b). Poly
meric micelles were created using PEG-b-PCL and EG-b-PBCL and used 
to deliver resveratrol and DOX. The encapsulation efficiency was re
ported to be 87.7%, and the combination with resveratrol resulted in 
more inhibitory impacts on the proliferation of cervical cancer cells 
compared to DOX or resveratrol alone (Table 2) (Washington et al., 
2018). 

6. Micelles in doxorubicin and gene co-delivery 

Owing to its complexity, the treatment of cancer requires interdis
ciplinary approaches, and gene therapy has emerged as an option. 
Although gene therapy was launched as a contemporary and unique 
treatment for cancer, its effectiveness is limited. The development of 
drug resistance threatens the efficacy of chemotherapy. Resistance is 
developed in part due to the degradation of delivered genes by enzymes, 
the low circulation time, and the low internalization of tumor cells due 
to their having similar charges as the cell membrane. Nanocarrier 
research has accelerated in order to overcome these obstacles. Recently, 
delivery of genetic tools by nanostructures has been a promising strategy 
in cancer treatment and reversing drug resistance (Ashrafizadeh et al., 
2020d, 2021c; Mirzaei et al., 2021c). More importantly, doxorubicin 
co-delivery with genetic tools has been investigated (Ashrafizadeh et al., 
2022c), but more research is needed to pave the way for clinical 
application and treatment in cancer patients. The current section focuses 
on the co-delivery of DOX with genes by nanostructures for cancer 
therapy. RNA interference (RNAi) has been introduced as an effective 
strategy in the treatment of viral infections and cancer (Dykxhoorn and 
NovinaP.A.J.N.r.M.c.b. Sharp, 2003; Li et al., 2005). However, an 
appropriate delivery is vital for RNAi (Zimmermann et al., 2006). 

Fig. 7. (A) Co-delivery of DOX and DTX by micelles and internalization in tumor cells via endocytosis in cancer inhibition; (B) Viability of breast tumor cells after 
exposure to drug-loaded micelles. Reprinted with permission from Elsevier (Wu et al., 2018). 
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Table 2 
The role of micelles in co-delivery of DOX with anticancer agents.  

Nanovehicle Cancer type Drugs Remarks Refs 

Polymeric micelles Breast cancer thioridazine and doxorubicin Suppressing tumor growth in a synergistic 
way 
Reducing number of cancer stem cells 

Ke et al. (2014) 

Poly (lactic acid)-poly (ethylene glycol)-folate- 
based polymeric micelles 

Ovarian cancer Docetaxel and doxorubicin Particle size of 185 nm and drug release in 
a pH-sensitive manner 
High cellular uptake 
Enhanced cytotoxicity 

Hami et al. (2017) 

pH-responsive β-cyclodextrin grafted micelles Breast cancer Doxorubicin and conferone 34.5 nm particle size 
Apoptosis induction through intrinsic 
pathway 

Rahmani et al. 
(2021) 

Thermoresponsive Polymeric Micelles Hepatocellular 
carcinoma 

Doxorubicin and Quercetin Biodegradable and biocompatible 
nanocarriers 
Synergistic cancer therapy 

Soltantabar et al. 
(2020) 

Soluplus®-TPGS mixed micelles Breast cancer Dihydroartemisinin and 
doxorubicin 

Encapsulation efficiency of 90% 
Reduced systemic toxicity 
Increased cytotoxicity against tumor cells 

Wang et al. (2019) 

Amphiphilic Copolymeric Micelles Breast cancer Doxorubicin and Curcumin Suppressing proliferation 
Decreasing ATP levels 
P-gp down-regulation 
Revering chemoresistance 

Lv et al. (2016) 

hyaluronic acid-vitamin E succinate (HA-VES) 
graft copolymer-based micelles 

Breast cancer Doxorubicin and curcumin High colloidal stability 
Apoptosis induction 
Enhanced cellular uptake 

Ma et al. (2017) 

Anti-GLUT1 antibody-targeted polymeric micelles Colon cancer Curcumin and doxorubicin High tumor suppression and enhanced 
survival of animal models 

Abouzeid et al. 
(2013) 

Multi-functional micelles Human carcinoma KB 
cell line 

Doxorubicin and paclitaxel Prolonged drug release 
Increased penetration 
Synergistic impact 

Duong and Yung 
(2013)  

Fig. 8. (A) DOX-loaded micelles for increased cellular uptake and inhibition of P-gp to prevent efflux of DOX from tumor cells; (B) expression level of P-gp and 
apoptosis-related protein using Western blot; (C and D) Analysis of results obtained from Western blot. Reprinted with permission from Elsevier (Shen et al., 2014). 
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Cationic polymers and lipid-based nanoscale delivery systems are now 
appropriate non-viral vectors for cancer therapy and delivery of small 
interfering RNA (siRNA) (Akinc et al., 2008). In this regard, an experi
ment has developed cholic acid-polyethylenimine micelles for the de
livery of siRNA and DOX for colorectal cancer therapy. The 150 nm 
particle size, +12 mV zeta potential, and 61.2% entrapment efficiency of 
drug- and gene-co-loaded micelles are significant advantages. Micelles 
can also be modified with folate. This nanoformulation stimulates 
apoptosis and necrosis in colorectal cancer cells, and modification with 
folate increases anticancer activity (Amjad et al., 2015). One of the most 
promising approaches to increasing drug sensitivity is preventing the 
activity of drug efflux transporters. In cancers, an upregulation of P-gp, 
MRP, and BCRP transporters is observed (Gottesman and FojoS.E.J.N.r. 
c. Bates, 2002). These transporters have a high substrate specificity and 
increase xenobiotics efflux (Lage and sciences, 2008). P-gp is encoded by 
MDR-1 and decreases the accumulation of chemotherapy agents in 
tumor cells (Hilgendorf et al., 2007; Szakács et al., 2004). A mixed 
dendrimer micelle has been synthesized for the delivery of siRNA-MDR1 
and DOX for cancer therapy. Modification of these nanoparticles with 
the monoclonal antibody 2C5 can aid better identify tumor cells via 
cell-surface-bound nucleosomes. Subsequently, internalization of 
nanoparticles in tumor cells increases to suppress tumor progression and 
spheroid formation via the release of siRNA and DOX (Pan et al., 2020). 

Due to the significance of P-gp in the development of MDR, there has 
been interest in the use of P-gp-siRNA to enhance DOX sensitivity. Mi
celles are widely exploited in cancer treatment for the transport of 
medicines and nucleic acids (Shapira et al., 2011; Dai et al., 2011; Chen 
et al., 2014a; Xiong and Lavasanifar, 2011). They are a suitable delivery 
mechanism for siRNA with chemotherapy as they can mediate the 
release of siRNA sooner than chemotherapy agents. Therefore, activity 
of drug efflux pump is suppressed, and sensitivity to chemotherapy 
agent is enhanced (Duan et al., 2013). In an experiment, self-assembled 
micelles were developed from PEI-CyD loaded with DOX in the core of 
nanostructures. Besides, siRNA can be conjugated to outer PEI-CyD via 
electrostatic interaction for optimal cellular delivery of siRNA and DOX 
to increase the sensitivity of tumor cells to chemotherapy (Fig. 8) (Shen 
et al., 2014). 

The use of stimuli-responsive micelles in DOX delivery has been 
demonstrated in previous sections. These nanocarriers are designed for 
the co-delivery of drugs and genes for cancer therapy. Specifically, pH- 
and redox-sensitive micelles are designed for the co-delivery of DOX and 
PLK-1-siRNA for cancer suppression. Low molecular weight poly (sty
rene-alt-maleic anhydride) is utilized for the synthesis of smooth, 
spherical polymeric micelles. Then, DOX and PLK-1-sIRNA are loaded 
onto micelles, and nanostructures are coated with bovine serum albumin 
(BSA) to increase their stability. The release of DOX and siRNA occurs in 

the presence of 10 mM GSH and low pH (5), which suppress tumor 
progression synergistically (Aji Alex et al., 2017). Therefore, it is highly 
suggested to deliver siRNA along with DOX for cancer suppression. 
Similar to siRNA, shRNA can also be applied to decrease the expression 
level of tumor-promoting genes. Intriguingly, co-delivery of DOX with 
shRNA by nanoparticles overcomes DOX’s insensitivity. PLK-1 exerts an 
oncogenic function, and its inhibition by miR-23a or nanostructures can 
impair tumorigenesis (Kollur et al., 2021; Chen et al., 2018). pH- and 
redox-sensitive micelles have been developed for the delivery of DOX 
and PLK-1-shRNA for glioma suppression. In the structure of polymeric 
micelles, there are repeating units containing disulfide bonds. After 
internalization in cancer cells, the “proton sponge effect” causes lyso
somal escape and delivers shRNA and DOX to suppress glioma pro
gression (Wang et al., 2018). Nevertheless, there are limitations in the 
use of micelles for the co-delivery of DOX and shRNA in cancer therapy. 
Furthermore, CRISPR/Cas9 system delivery with DOX might be 
explored as a potent genetic weapon for cancer treatment. Table 3 
summarizes the use of gene and drug co-loaded micelles for cancer 
therapy. 

7. Micelles, doxorubicin delivery and phototherapy 

When the temperature of the tumor microenvironment rises over 
42 ◦C, cancer cell elimination can occur (Wei et al., 2022; Ashrafizadeh 
et al., 2022d). Photothermal therapy (PTT) is a new emerging thera
peutic tool for cancer cell ablation and is based on transforming light 
energy into heat at tumor site mediated by photothermal compounds. 
Based on the tolerance variance between normal and cancer cells, PTT 
can specifically kill tumor cells with only partial side effects on normal 
cells. Therefore, after the localization of photothermal agents at a 
certain site, irradiation can be performed. However, there should be 
nanoscale delivery systems for specific delivery of these photothermal 
agents at tumor site (Lv et al., 2021). The significance of PTT in 
increasing the temperature of the tumor’s microenvironment, cancer 
cell elimination, and chemotherapy effectiveness is becoming more 
evident (Wang et al., 2021b, 2022b; Chen et al., 2021d, 2021e, 2021f). 
Similarly, photodynamic therapy (PDT) is utilized in cancer therapy to 
enhance reactive oxygen species (ROS) production and mediate tumor 
cell death (Ji et al., 2022a). In recent years, nanoparticle-mediated 
photodynamic therapy (PDT) has been a hot subject, not only for 
inhibiting tumor development but also for boosting cancer cell sensi
tivity to chemotherapy (Dhilip Kumar and Abrahamse, 2021; Zhu et al., 
2021b). The aim of the current section is to evaluate the contribution of 
micellar-loaded DOX nanoparticles to the enhancement of photo
therapeutic tumor ablation. 

Table 3 
Drug and gene co-loaded micelles for cancer therapy.  

Nanoparticle Drug and 
gene 

Cancer type Remark Ref 

Folate-conjugated cholic acid-polyethyleneimine 
micelles 

Doxorubicin 
VEGF-siRNA 

Colorectal 
cancer 

CO-delivery of siRNA and DOX in VEGF down-regulation and 
increasing drug sensitivity 

Amjad et al. 
(2015) 

Monoclonal antibody 2C5-modified mixed 
dendrimer micelles 

Doxorubicin 
MDR-1-siRNA 

Ovarian cancer Recognition of tumor cells due to surface modification 
Preventing drug resistance 

Pan et al. (2020) 

BSA-stabilized micelles Doxorubicin 
PLK-1-siRNA 

Breast cancer Enhanced stability of micelles due to modification with BSA 
Release of drug in response to GSH and low pH levels 
High anticancer activity in vitro and in vivo 

Aji Alex et al. 
(2017) 

Graft copolymeric micelles Doxorubicin 
PLK-1-siRNA 

Breast cancer Penetrating into endolysosomal membrane 
Complexation of siRNA with arginine-lysine conjugates 
Co-localization in cytoplasm of nanoparticles 

Aji Alex et al. 
(2016) 

Polymeric micelles Doxorubicin 
MDR-1-siRNA 

Breast cancer Co-delivery of drug and gene, and modification with peptide 
increases tumor selectivity 

Xiong et al. 
(2010) 

Polypeptide cationic micelles ZEB1-siRNA 
Doxorubicin 

Lung cancer Down-regulation of ZEB1 to suppress EMT and increased DOX 
sensitivity 

Fang et al. 
(2014) 

pH- and redox-sensitive micelles PLK-1-shRNA 
Doxorubicin 

Glioma Release of cargo in response to GSH and low pH levels to increase 
tumor suppression 

Wang et al. 
(2018)  
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7.1. Photothermal therapy 

The development of phototherapeutic agents using polymeric mi
celles has been critical in increasing the cytotoxicity of DOX against 
cancer cells. Light-absorbing compounds with phototherapy activity are 
incorporated into the micelle structure. In a study, poly (dithienyl- 
diketopyrrolopyrrole) (PDPP) polymers were used to create polymeric 
micelles loaded with DOX. PDPP can absorb near-infrared light at a 
wavelength of 700–1000 nm and produce heat, serving as a photo
thermal agent. The micelles showed high stability even after exposure to 
808-nm laser radiation. The DOX loading has some influence on the 
micelle particle size and photothermal potential. The F127 polymer with 
thermosensitive properties caused the swelling of the micelles for the 
release of DOX, providing both photothermal therapy and chemo
therapy (Liu et al., 2017b). Interestingly, micelles can also be loaded 
with light-absorbing dyes for PTT and cancer imaging. In a study, mi
celles were made from dextran-polylactide (DEX-PLA) copolymers and 

loaded with both DOX as an anticancer agent and DiR as a near-infrared 
dye. The micelles showed good physical activity and favorable photo
thermal stability. They were able to accumulate at tumor sites, providing 
both chemotherapy and PTT for image-guided cancer treatment (Shi 
et al., 2021). Poly [2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3, 
4-b′]dithiophene)-alt-4,7 (2,1,3-benzothiadiazole)] (PCPDTBT) is a 
polymer containing both an aromatic ring and a heterocyclic ring with 
photoacoustic activities. These components make them absorb light at a 
wavelength of 650–900 nm (Arca et al., 2013; Baeg et al., 2013). 
PCPDTBT, specifically, enables the conversion of light to heat in order to 
induce necrosis in tumor cells (Li et al., 2016; Zhang et al., 2016). 
GSH-sensitive micelles consisting of DOX and semiconducting polymer 
dots are gaining popularity as a cancer therapy solution. These micelles 
are made from monomethoxy-poly (ethylene glycol)-S-S-hexadecyl 
(mPEG-S-S-C16), a hydrophobic material with improved solubility and 
stability in water. The presence of GSH causes the breakdown of the 
disulfide bonds, which triggers the release of the cargo. Additionally, the 

Fig. 9. (A) The application of micelles for DOX delivery and phototherapy ablation of cancer cells; (B) In vivo efficacy of nanostructures; (C) Tumor volume and 
weight upon application of micelles. Reprinted with permission from Elsevier (Zhang et al., 2018a). 
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combination of PCPDTBT dots and DOX provides both PTT and 
chemotherapy, effectively suppressing tumor growth (Cai et al., 2017). 

In an experiment, three strategies were adopted to enhance the ef
ficacy of micelles in chemotherapy. Firstly, DOX was combined with 
indocyanine green (ICG) to perform photothermal therapy (PTT) within 
the polymeric micelles. Secondly, the micelles were modified with folate 
to increase the uptake of nanocarriers through receptor-mediated 
endocytosis. Thirdly, the micelles were designed to be responsive to 
both pH and redox. A particle size of 100 nm with good monodispersity 
and high encapsulation efficiency was found to be the most effective for 
both DOX and ICG delivery. These micelles were uptaken by cancer cells 
via endocytosis, resulting in suppression of tumor development through 
a combination of chemotherapy and PTT (Fig. 9) (Zhang et al., 2018a). 

7.2. Photodynamic therapy 

An alternative method for PDT is the utilization of micelles. As 
previously stated, the mechanism behind PDT involves increasing the 
quantity of free radicals to damage cells. In this approach, Pluronic F127 

micelles are altered with pheophorbide A and filled with DOX to form 
nanocarriers with a particle size of 146.5 nm and a zeta potential of 
− 3.2 mV. Exposing these nanocarriers to light irradiation leads to 
enhanced ROS generation in vitro and in vivo to suppress tumor pro
gression. In fact, nanocarriers provide both chemotherapy and PDT for 
melanoma suppression (Zhang et al., 2018b). Another approach to 
achieve both PDT and chemotherapy is the use of chlorin e6 (Ce6) mi
celles loaded with nitroimidazole (NI)-bearing polymers. These poly
meric micelles, containing Ce6 and DOX, have a particle size of 138.5 
nm and release their cargo when exposed to the hypoxic environment of 
a tumor. The hypoxic environment triggers the bio-reduction of the NI 
moiety, which transforms into an aminoidazole, leading to the disas
sembly of the micelle, release of the drug, and depletion of GSH. Upon 
irradiation, the NI is oxidized by Ce6, causing the collapse of the micelle 
and the release of the cargo, and generating aldehyde end-products, 
which in turn mediate both PDT and chemotherapy to suppress the 
growth of breast tumors (Deng et al., 2018). 

NIR light is considered biocompatible with high tissue penetration 
for biomedical applications (Li et al., 2018a; Chen et al., 2012; Park 

Fig. 10. (A) Synthesis of DOX-loaded micelles and their disassembly upon exposure to red emission; (B) Drug release upon irradiation and providing PDT in 
improving potential of DOX in cancer chemotherapy. Reprinted with permission from ACS (Chen et al., 2019). 
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et al., 2015). However, NIR has limitations in stimulating all photo
sensitizers, such as Ce6. Upconverting nanoparticles (UCNPs) to enable 
conversion of NIR to ultraviolet or visible light can be promising for 
biomedical applications due to narrow emission peak, high biocom
patibility, and high photostability (Jalani et al., 2018; Chen et al., 
2014b; Tian et al., 2013; Idris et al., 2015). The development of 
redox-sensitive hybrid micelles made of polymers and UCNPs has been 
explored for both photodynamic therapy and cancer chemotherapy. The 
hybrid micelles were formed by co-assembling UCNPs with block co
polymers, followed by the loading of Ce6 and DOX. The UCNPs can 
convert near-infrared laser (980 nm) into visible light, inducing ROS 
generation through Ce6. This ROS generation not only enables photo
dynamic therapy for tumor cells, but also oxidizes poly (propylene sul
fide) (PPS) to sulfoxide and sulfone, resulting in the release of DOX 
(Fig. 10) (Chen et al., 2019). Based on these studies, combination of PDT 
or PTT with chemotherapy is effective in improving the potential of DOX 
to suppress cancer (Table 4). 

8. Surface-modified micelles 

Tumor cells have different characteristics from normal cells, 
including differences in proliferation and metastasis as well as variations 
in receptor expression on their surfaces. Unlike epithelial cells which 
have low expression of folate receptors, the expression of these receptors 
increases in cells undergoing malignant transformation (Ramezani Far
ani et al., 2022). The functionalization of nanostructures has been per
formed in other studies for improving their potential in cancer therapy. 
After preparation of gold nanostructures, they were modified with PEG 
and then their functionalization with triptorelin were performed to 
enhance adhesion, affinity and selectivity towards triple-negative breast 
tumor cells (Uzonwanne et al., 2022). The iron oxide nanostructures 
were functionalized by a ligand targeting EGFR in suppressing pro
gression of head tumor cells and such surface functionalization promotes 
cellular uptake in cancer cells (Freis et al., 2023). The modification of 
iron oxide magnetic nanoarchitectures with a cell-penetrating peptide 
improved their capacity of nanostructures in DOX delivery (Hasani 
et al., 2023). Hence, surface modification of nanostructures is a prom
ising approach for targeted delivery of drugs. Folate receptor upregu
lation on the surface of cancer cells enables the import of folate into 

tumor cells for proliferation (Krais et al., 2014; Nosrati et al., 2022b). 
The use of folic acid modification in polymeric micelles has been suc
cessful in improving their selectivity towards tumor cells. P (MPC-co-
MaPCL) polymeric micelles were created with folic acid modification for 
DOX delivery. These micelles had a spherical shape with particle sizes 
ranging from 90 to 140 nm. The intracellular accumulation of DOX in 
cervical cancer cells was increased by 4.3-fold and its cytotoxicity was 
enhanced as a result of the folic acid modification (Lu et al., 2019). It is 
also believed that PEGylation of micelles is effective in enhancing the 
blood circulation time of nanoparticles due to preventing protein 
interaction and clearance of micelles by MPS (Blanco et al., 2015; Harris 
and R.B.J.N.r.D.d. Chess, 2003). Besides, PEGylated micelles not only 
have a high circulation time in blood but also present with enhanced 
permeability and retention (EPR) effect (Mima et al., 2015; Stolnik et al., 
2012; Maeda and Matsumura, 2011). However, frequent application of 
PEGylated micelles can lead to increased clearance from blood and 
immune system, negatively affecting their pharmacokinetic and bio
distribution (Schellekens et al., 2013; Koide et al., 2008; Lila and 
KiwadaT.J.J.o.C.R. Ishida, 2013). Therefore, the use of folate-modified 
cell membrane-mimicking polymeric micelles is considered more 
effective for DOX delivery. These micelles are created from PMPC-based 
zwitterionic polymers that interact with folate receptors on cancer cell 
surfaces. For example, PCL-b-PMPC-FA micelles are biodegradable and 
can release DOX after a drop in pH from 7.4 to 5. These micelles have a 
particle size of 158 nm and exhibit high uptake in both breast and cer
vical cancer cells (Du et al., 2021). Therefore, when micelles are 
modified with folate, there is an increase in cellular uptake and cyto
toxicity against tumor cells (Zhang et al., 2019b; Yang et al., 2013). 

As a linear glycosaminoglycan, hyaluronic acid (HA) is a favorable 
compound for nanomedicine due to its biodegradability, biocompati
bility, non-immunogenicity, and low toxicity (Shah et al., 2015). Hy
droxy and carboxy groups are available functional groups for 
conjugation with other agents. CD44 is upregulated in many cancer 
types, and nanostructures can be modified with HAs to improve their 
tumor-targeting ability (Ashrafizadeh et al., 2021a). HA-modified 
polymeric micelles can be used for DOX delivery in combination with 
HA-glycyrrhetinic acid and HA-I-histidine conjugates. The anticancer 
activity of DOX-loaded micelles is examined in hepatocellular carci
noma, where they released DOX in response to pH and showed 

Table 4 
The role of micelles for delivery of DOX delivery to mediate phototherapy.  

Nanovehicle Cancer type PDT/ 
PTT 

Remark Ref 

Hierarchical micelles Lung cancer PTT Enhanced internalization in cancer cells via endocytosis 
Hyperthermia induction 
Potentiating chemotherapy efficacy 

Wan et al. 
(2014) 

pH-responsive polymeric micelles Cervical cancer PTT 
PDT 

Polydopamine nanoclustered micelles mediate PDT and PTT in reversing drug 
resistance 

Xing et al. 
(2019) 

Polymeric micelles Cervical cancer PTT Enhanced drug loading efficiency due to presence of hydrogen bonds between 
urea/thiourea groups and drugs 
PTT-mediated drug release 

Li et al. (2018b) 

pH-responsive polymeric micelles Cervical cancer PTT pH-responsive release of drug 
Combination of PTT and chemotherapy in synergistic cancer suppression 

Jia et al. (2017) 

NIR/GSH-responsive biodegradable 
micelles 

Hepatocellular 
carcinoma 

PTT 
PDT 

119.7 nm particle size 
Low critical micelle concentration 
Photodecomposition 
Good biodegradation 
Controlled drug release 

Zhang et al. 
(2019a) 

Polymeric micelles Cervical cancer PTT Efficient drug release 
High PTT efficacy 
Appropriate tumor ablation 

Li et al. (2015a) 

Polymeric micelles Breast cancer PTT Development of pH- and redox-sensitive micelles 
High photothermal transformation efficiency 
Suppressing tumor metastasis 

Wu et al. (2021) 

Magnetic thermosensitive micelles Breast cancer PTT Synergistic combination of chemotherapy and PTT in cancer suppression Wu et al. 
(2016a) 

Polymeric micelles Cervical cancer PTT 
PDT 

Hyperthermia induction and increasing ROS generation 
Boosting DOX’s efficacy in cancer suppression 

Ji et al. (2022b)  
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significant cellular uptake in HepG2 cells owing to interactions of HA 
with overexpressed CD44 receptors (Wu et al., 2016b). It is noteworthy 
that micelles can be modified with two ligands for DOX delivery. By 
conjugating hyaluronic acid (HA) to folic acid (FA) through a 
redox-responsive disulfide bond, micelles are developed. The encapsu
lation efficiency of the micelles is excellent, with a particle size of 
100–120 nm and a negative zeta potential of − 31.5 mV. The release of 
DOX from the micelles is sensitive to redox conditions due to the pres
ence of disulfide bonds and the HA and FA conjugates. This combination 
enhances the selectivity towards tumor cells and results in high cellular 
uptake rates (Yang et al., 2018b). In a separate study, redox-responsive 
HA–Fe-C14 micelles modified with HA were created for the delivery of 
DOX to the tumor environment. The addition of HA enhances the 
binding of the micelles to CD44 and enables drug encapsulation. The 
conjugation of HA to the micelles, along with the effects of GSH and 
electrostatic interactions, can lead to the release of DOX from the mi
celles (Fig. 11) (Mao et al., 2019). 

One of the strategies for increasing the stability of DNA is its 
conjugation to peptide (Singh et al., 2010; Lou et al., 2016). Cationic 
peptides are located on the surface of DNA micelles and are effective for 
improving stability against degradation by nuclease digestion. 
Furthermore, modification of micelles with mucine-1 (MUC1) aptamers 
can increase recognition of tumor cells (Abnous et al., 2017; Taghdisi 
et al., 2016). In an effort, hybrid micelles were created from DNA blocks 
and used to deliver pro-apoptotic peptides DOX and KLA. The effec
tiveness of the delivery and internalization of micelles in breast cancer 
cells is improved by modification with the MUC1 aptamer and the 
combination of DOX and KLA for suppressing tumor growth (Charbgoo 

et al., 2018). Overall, modification of nanostructures with ligands is 
important and can lead to increases in the internalization of nano
particles via endocytosis (Table 5) (Makvandi et al., 2021). 

9. Conclusion and clinical implications 

Nanomedicine has become a subject of significant interest in recent 
times due to its potential to enhance cancer management and treatment. 
While novel therapies such as drugs and genetic tools have been 
developed, their effectiveness is frequently limited because they lack 
specificity and targetability towards tumor cells. DOX is a commonly 
used chemotherapy agent in clinical practice, but its frequent adminis
tration often results in the development of chemoresistance. To over
come this issue, nanostructures can be employed to deliver low 
concentrations of DOX specifically to tumor cells, effectively bypassing 
the development of drug resistance. The biocompatibility of nano
structures is critical for their clinical utility, and lipid-based nano
particles, including micelles, are considered among the most 
biocompatible nanostructures for cancer therapy. 

This review investigated the function of micelles in the delivery of 
DOX for cancer treatment. Due to the unique features of the tumor 
microenvironment, micelles can be engineered as stimuli-responsive 
nanocarriers that can react to pH, redox, light, and other stimuli, 
allowing for better targeting of DOX to tumor cells. Furthermore, DOX 
can be co-delivered with other anticancer agents or genetic tools in 
micelles for more effective suppression of tumor cells. Surface modifi
cation of micelles using molecules such as folate, hyaluronic acid, and 
aptamers can improve their specificity towards cancer cells. 

Fig. 11. (A–C) Development of DOX-loaded micelles for GSH-responsive release of DOX in cancer chemotherapy. Reprinted with permission from ACS (Mao 
et al., 2019). 
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Additionally, using micelles in photodynamic therapy and photothermal 
therapy can improve the effectiveness of DOX in cancer chemotherapy. 
In conclusion, micelles show great promise for cancer treatment, and 
future studies should concentrate on their clinical translation to benefit 
cancer patients. 

The concept of this paper has been organized in a manner to develop 
smart nanocarriers for delivery of DOX as a popular drug in chemo
therapy. The idea has been evolved in a way not to mediate its delivery, 
but propose ideas about designing smart micellar nanostructures for 
DOX delivery. The advantageous of using micelles is that they mediate 
sustained delivery of DOX and increase its accumulation in cancer cells. 
Moreover, the functionalized micelles increase cellular uptake 
compared to non-modified micelles. Furthermore, stimulus-responsive 
micelles release DOX at tumor site. Another benefit is that micelles 

mediate co-delivery of DOX with other drugs and genes in cancer ther
apy. The third benefit is that micelles induce PDT and PTT in increasing 
potential of DOX in synergistic cancer removal. The most important 
benefit that can pave their application in clinical trial is their high 
biocompatibility. However, one of the disadvantageous of micelles is 
their degradation and burst release of drug that can be solved by 
modification through chitosan or other polymers to prevent burst 
release of drug and improve potential in cancer therapy. 
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