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ARTICLE INFO ABSTRACT

Keywords: The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs.
Gold nanoparticles In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of
Chemoresistance

cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous
properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This
review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing
GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform
for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a syner-
gistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity.
Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemothera-
peutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at
the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been
performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor
cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining
their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs
is contingent on enhancing their biocompatibility.

Synergistic therapy
Cancer treatment
Bioengineering
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1. Introduction

After heart disease, cancer has been highlighted as a life-threatening
hazard (Park and Han, 2019; Heron, 2012). Although our knowledge
and information about cancer biology have significantly improved, we
still have a long way to go before curing cancer. Each cancer cell has
unique properties distinct from normal cells, and such features can be
targeted for the purpose of cancer therapy. Tumor cells display accu-
mulation of genomic mutations during their progression, and some of
the factors may increase their metastasis and reaching to a secondary
site (Pastushenko and Blanpain, 2019). Furthermore, tumor cells show
dysregulation of non-coding RNAs (Anastasiadou et al., 2018), and in
spite of understanding the biological aspects of tumors, their cure is still
a problem.

Nanoparticles are structures with a size in the range of nanometers
(less than 100 nm), and throughout the past several decades, these
carriers have opened a new window in the treatment of various diseases,
particularly cancer. Nanomedicine is a growing field, and new discov-
eries in this field might considerably aid scientists in overcoming cancer,
one of the most lethal and deadly diseases (Garbayo et al., 2020; Irvine
and Dane, 2020). Because cancer is a complicated disease, it is unlikely
for a single discipline to find a cure; thus, scientists have focused on
merging biology, engineering, and other disciplines to make significant
progress in cancer treatment (Dalpiaz et al., 2020; Venkatas and Singh,
2020). Furthermore, there are biological issues that can be resolved with
nanotechnology and bioengineering. To date, nanoparticles have been
fabricated for drug delivery (Ertas et al., 2021), gene delivery (Li et al.,
2020), and the co-delivery of genetic tools and antitumor compounds
(Yang et al., 2020a). One of the issues with cancer is the late detection in
advanced stages, when cancer cells are no longer sensitive to therapies;
thus, nanotechnology can play a crucial role by facilitating timely cancer
diagnostics (Li et al., 2020; Alafeef et al., 2020; Abbasi et al., 2022). It is
worth mentioning that nanocarriers have opened the way for the
treatment of cancer patients (Khoobchandani et al., 2020). Finally,
nanotechnology has found its way to precision cancer medicine (Adir
et al., 2020).

For decades, chemotherapy has been the first option in the treatment
of cancer patients, and it is generally preferred to surgery due to its
minimally invasive nature and its efficacy in cancer elimination at
advanced stages, when cancer cells have diffused to different organs of
the body and it is impossible to use surgery. However, chemotherapy has
its own issues, including side effects and chemoresistance (Wang et al.,
2020; Shiokawa et al., 2020; Przanowski et al., 2020; Salehiabar et al.,
2023; Hashemi et al., 2022a). Regardless of the negative consequences,
drug resistance is a growing problem today and the leading cause of
failure in cancer treatment (Davar et al., 2021). Although a variety of
strategies have been developed for overcoming chemotherapy resis-
tance, this condition is still causing a high rate of death among cancer
patients, and novel tools should be considered in this way.

In the current review, we focus on using gold nanoparticles (GNPs) as
one of the most well-known metal nanocarriers for delivery of chemo-
therapeutic agents in cancer therapy. First, we provide an overview of
GNPs and their biomedical applications to demonstrate how these
nanostructures have paved the way for disease treatment, with a focus
on cancer. Then, currently applied chemotherapeutic agents—the most
important ones—are discussed, and an overview of current problems
with chemotherapy is provided. Drug resistance is the most important
one. Then, we focus on the delivery of chemotherapeutic agents by
GNPs. The co-delivery of chemotherapeutic agents with genetic tools or
other antitumor compounds can be performed by GNPs. Stimuli-
responsive devices based on GNPs have been developed for the tar-
geted delivery of chemotherapeutic agents. Surface modification of
GNPs by polymers has been conducted to enhance their selectivity to-
wards cancer cells. Finally, theranostic potential and hybrid nano-
composites developed for delivery of chemotherapeutic agents are
discussed to shed some light on the potential of GNPs as promising
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nanocarriers in cancer elimination.
2. Gold nanoparticles: an overview

GNPs are widely used for drug and gene delivery among inorganic
nanomaterials because to their unique properties, including shape and
size tunability, surface modification, and controlled release (Zhang
et al., 2020a). GNPs have been found to possess high biocompatibility
and biological inertia (Zhao et al., 2018; Connor et al., 2005a; Bhatta-
charya and Mukherjee, 2008; Kim et al., 2009). Typically, GNPs have a
particle size in the range of 1-150 nm and can load drugs in their cavity
or on their surface (Kim et al., 2009; Kong et al., 2017; You et al., 2010;
Ajnai et al., 2014). Due to the high surface-to-volume ratio of GNPs,
however, experiments favor conjugation of drugs on the surface of
GNPs, resulting in the creation of pro-drugs (Biener et al., 2009). GNPs
are being employed in a variety of sectors, including life sciences,
analytical chemistry, genetic engineering, the food industry, medicine,
and clinical therapy (Howes et al., 2014). To date, a variety of methods
have been applied for the synthesis of GNPs, such as top-down and
bottom-up techniques and physical techniques such as grinding and
etching. However, physical techniques are not recommended due to
their complexity and cost (Howes et al., 2014; Saha et al., 2012; Li and
Yang, 2013; Zezin et al., 2020). Chemical methods and Brust-Schiffrin
are other kinds of strategies that can be used for the synthesis of
GNPs, both of which have drawbacks, including toxicity to the envi-
ronment and biosystems (Panigrahi et al., 2004). In spite of different
strategies to develop GNPs, there are still issues with their large-scale
production due to the high cost of materials, chemicals, and energy, as
well as the high use of organic solvents, necessitating the development
of novel methods for their affordable synthesis with minimal environ-
mental impact. For the synthesis of GNPs, an alternate procedure was
utilized. This method relies on nature as a rich supply of molecules and
substances with different properties useful for producing safe and
inexpensive GNPs. Numerous methods, including one-pot hydrothermal
chemical reduction, seed growth-assisted co-precipitation, microfluidic
droplets, etc. have been proposed for the green synthesis of GNPs with
low cost, high biocompatibility, and partial toxicity for environment and
have recently been reviewed by Qiao and Qio (Qiao and Qi, 2020).
Various forms of GNPs, such as spherical GNPs, gold nanorods, gold
nanoshells, gold nanoclusters, GNP-liposomal hybrid nanocarriers, etc.,
have been produced for biomedical applications (Bromma and Chi-
thrani, 2020). Each nanocarrier has its own advantages in disease
therapy, but spherical GNPs are the most commonly used due to their
ease of synthesis, affordable production, controlled size, and capacity of
surface modification (Yeh et al., 2012; Stiufiuc et al., 2013). In cancer
therapy, spherical GNPs can be used for antitumor drug administration
or X-ray irradiation (Sztandera et al., 2019). As gold nanorods and gold
nanoshells possess a high near-infrared (NIR) cross-section, they are
favored over other types of GNPs for cancer hyperthermia (Huff et al.,
2007; Rastinehad et al., 2019).

GNPs have attracted much attention in the field of cancer therapy
and diagnosis. Significant effort has gone into determining the true
potential of these nanostructures in cancer eradication. GNPs can aid in
the early detection of cancer in its early stages. It has been reported that
ultrasmall gold quantum clusters have a low circulation time in blood
and can effectively internalize at tumor site with low accumulation in
reticuloendothelial system. In respect to producing contrast for fluo-
rescence, X-ray computed tomography, and magnetic resonance imag-
ing (MRI), and owing to their retention at tumor sites, they can be
applied for the diagnosis of cancer (Yang et al., 2020b). Furthermore,
radiolabeled GNPs have been developed for cancer diagnosis (Silva
et al., 2020). Since GNPs can provide simultaneous cancer imaging and
treatment, they have been extensively applied as theranostic agents.
Decorating carbon nanotubes with magnetic and GNPs, for example,
results in the preparation of therapeutic nanocarriers capable of imaging
(MR, for example) and providing thermotherapy to kill cancer cells
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(Saghatchi et al., 2020). The next step in using GNPs in cancer therapy is
making changes in their surface chemistry to enhance their selectivity
towards cancer cells. It has been revealed that cancer -cell
membrane-coated GNPs can provide selective homotypic targeting of
cancer cells (Sun et al., 2020). Different strategies, such as using poly-
mers including chitosan, hyaluronic acid, alginate, fucoidan, aptamers,
DNA linkers, etc. have been applied for surface modification of GNPs,
and conjugating compounds on their surface (Zhang et al., 2020b;
Khademi et al., 2020; Chen et al., 2020a; Manivasagan et al., 2019;
Jacinto et al., 2020). Furthermore, GNPs can target molecular pathways
that are responsible for cancer progression. Drug-conjugated GNPs
suppress PI3K/Akt signaling to inhibit breast cancer viability and
growth (Mahmoud et al., 2020). Taking everything together, GNPs are
promising candidates in cancer therapy and diagnosis (Ding et al., 2020;
Hao et al., 2020; Zhang et al., 2021; Fan et al., 2020; Chen et al., 2020b;
Norouzi, 2020), and in the next section, we mechanistically discuss the
role of these nanocarriers in cancer chemotherapy.

3. Chemotherapy: current status and promises

One of the foremost limiting factors in reaching a satisfactory level
for the treatment of cancer patients is cancer drug resistance (Vasan
et al., 2019). Importantly, cancer drug resistance shares many similar-
ities with drug resistance during infections in that in both fields (cancers
and infectious diseases), intrinsic and extrinsic aggressors participate in
the emergence of drug resistance. When cancer cells develop resistance
to therapy, cancer patients face another challenge: relapse and recur-
rence. One of the primary solutions for overcoming drug resistance in
human cancers is to avoid single chemotherapy and instead use a variety
of chemotherapy compounds with different action mechanisms; this is
known as polychemotherapy. Important lessons have been learned from
combination antimicrobial treatment (Crofton, 1959). However, this
was not limited to hypothesis, and therefore, some empirical approaches
were conducted in the therapy of lymphoma, breast cancer, and testic-
ular tumors (DeVita et al., 1980; Bonadonna et al., 1976; Bosl et al.,
1986). When it was believed that combination cancer therapy was
beneficial in tumor suppression, complicated cancer therapy regimens
were developed, resulting in the development of a new pattern in cancer
elimination. Furthermore, some other approaches were developed to
provide more insights and hope in cancer therapy, including various
dose levels (Hryniuk and Bush, 1984), shorter-interval administrations
of chemotherapy (Citron et al., 2003; Sternberg et al., 2001), and higher
concentration levels of chemotherapy (Sternberg et al., 2001). Even in
the process of polychemotherapy, there were different approaches; one
of them was the combination of two chemotherapy compounds, and
another was the combination of plant-derived natural products with
synthetic drugs in cancer therapy. Both of these approaches have shown
promising results in cancer therapy. For instance, resveratrol, as a nat-
ural product, is capable of suppressing the IL-6/STAT3 axis, which is
beneficial in impairing M2 polarization of macrophages, enhancing the
number of M1 polarized macrophages, and enhancing drug sensitivity
(Cheuk et al., 2022). Furthermore, curcumin disrupts the PI3K/Akt/m-
TOR axis to increase the sensitivity of tumor cells to cisplatin chemo-
therapy (Kalinina et al., 2022). As a result, the chemotherapy process
has been slightly improved in terms of tumor suppression. However, this
is not the end of the story, and a new problem in cancer chemotherapy is
multidrug resistance (MDR), which is defined as a process in which
tumor cells obtain the ability to develop resistance to different kinds of
chemotherapeutic agents that have various structures and mechanisms
of action (Fojo et al., 1987). The interesting point is that tumor cells can
not only obtain resistance to different chemotherapy compounds but
also show such properties before exposure to these agents (Kaye, 1988).

The mechanisms of chemoresistance are categorized into two groups
to make it easier to understanding the development of this process.
Intrinsic and adaptive drug resistance are two major categories of che-
moresistance that have been investigated in detail (Chatterjee and
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Bivona, 2019). If resistance is present before chemotherapy exposure, it
is known as “intrinsic drug resistance,” and it is considered the capacity
of treatment-naive tumors to survive in spite of exposure to chemo-
therapy that can result from genomic mutations or cell-state changes
(Wu et al., 2008; Bivona et al., 2011; Ng et al., 2012; Konieczkowski
et al., 2014). However, adaptive drug resistance occurs after the process
of chemotherapy in which populations and colonies of tumor cells
obtain genomic mutations or adaptations to the drug, and then some
changes in growth mechanisms and other related pathways may occur,
and these alterations lead to acquired drug resistance (Kobayashi et al.,
2005; Yun et al., 2008; Cross et al., 2014; Thress et al., 2015; Paskeh
et al., 2021).

Now, this question comes into mind: can specific mechanisms and
pathways responsible for MDR be targeted to reverse this condition? The
answer is yes, but MDR is a multifactorial condition, and it has been
shown that hyperactivation of ABC transporters on the surface of tumor
cells, epigenetic and genetic changes, apoptosis inhibition, autophagy
modulation, DNA damage repair, and cancer stem cells are among the
factors that can play a significant role in the process of MDR (Wu et al.,
2014). When the concept of MDR was introduced, it caused some worry
among physicians and those who work in the field of cancer therapy and
overcoming chemoresistance. First of all, due to the presence of MDR,
the strategy of combination cancer therapy may be compromised, and
therefore, a new solution should be provided as a preventative measure.
Moreover, although plant-derived natural compounds can be used along
with chemotherapy agents, they have poor bioavailability and thera-
peutic index (Ashrafizadeh et al., 2020a). Hence, researchers focused on
using gene therapy approaches to reverse chemotherapy resistance in
tumor cells. The purpose and final aim of gene therapy are similar to
those of polychemotherapy, but it is performed in a more specific way so
that a certain pathway or mechanism that can lead to drug resistance is
targeted by gene therapy, and then this can enhance the sensitivity of
tumor cells to chemotherapy (Izquierdo, 2005; Mirzaei et al., 2022;
Mahabady et al., 2022). With these descriptions, readers may consider
that the problem of drug resistance has been solved completely. How-
ever, when it comes to practical work, these strategies demonstrate
significant drawbacks that interfere with their therapeutic index. Both
approaches, including polychemotherapy and gene therapy, suffer from
a lack of specific delivery due to rapid metabolism of antitumor com-
pounds, and their short half-lives, chemoresistance, and effectiveness in
drug therapy still need to be addressed in cancer patients. Moreover, the
problem in gene therapy is more tangible since genes can be degraded by
RNase enzymes and they have an off-targeting feature. Moreover, low
pH in the tumor microenvironment may negatively affect the structure
and chemical activity of genetic tools. Therefore, nanostructures have
been extensively utilized for the delivery of genetic tools to overcome
the aforementioned problems in gene delivery and provide effective
cancer therapy (Mirzaei et al., 2021a; Ashrafizadeh et al., 2021a; Chadar
et al., 2021). According to these discussions, it can be highlighted that
nanoparticles play a significant role in the process of cancer therapy, and
one of their important functions is providing targeted delivery of drugs
and genes in cancer therapy to protect them, increase their bioavail-
ability, and internalize them in tumor cells in order to enhance the po-
tential of tumor suppression by current therapeutic tools. The next
sections specifically focus on the role of GNPs in providing cancer
chemotherapy, their potential in drug delivery, and other benefits such
as phototherapy in accelerating the process of tumor suppression.
Table 1 summarizes use of GNPs in cancer therapy.

4. Nanostructures in cancer chemotherapy: Beyond gold
nanoparticles

The field of cancer chemotherapy has evolved due to the introduc-
tion of nanostructures for drug delivery of drugs. Before discussing
function of GNPs in cancer chemotherapy and delivery of anticancer
agents, it would be beneficial to give an introduction about the role of
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Table 1
The application of GNPs for purpose of cancer therapy.
Nanoparticle Cancer Remark Ref.
type
Gold - Improving the phagocytosis ~ Al-Omar et al.
Nanoparticles of tumor cells (2021)
and Graphene
Oxide Flakes
Gold Prostate Precise devices for diagnosis ~ Alnaimi et al.
Nanoparticles- cancer of tumor (2022)
MWCNT Based
Aptasensor
Antibody- Cervical Apoptosis induction and Yu et al.
conjugated cancer targeted cancer therapy due  (2022)
silica-coated to modification with
gold aptamer
nanoparticles
Gold - Targeted delivery of Cunha et al.
nanoparticles epigallocatechin gallate for (2022)
apoptosis induction
Gold Ovarian Gold nanostructures target Hossen et al.
nanoparticles cancer IGFBP2/mTOR/PTEN axis (2022)
for suppressing cancer
proliferation
Gold Bladder Gold nanoparticles Daei et al.
nanoparticles cancer stimulate apoptosis and (2022)
promote ROS generation
pH-sensitive gold - Responsiveness to pH and Park et al.
nanoparticles mediating photothermal (2019)
therapy
Genistein-loaded Prostate High stability and reducing Vodnik et al.
gold cancer viability of tumor cells (2021)
nanoparticles
AS1411 aptamer- Breast Exerting radio-sensitive Mehrnia et al.
conjugated gold cancer activity (2021)
nanoparticles
Gold - Suppressing cancer- Zhang et al.
nanoparticles associated fibroblasts and (2021)
preventing the crosstalk of
cancer and
microenvironmental cells
PEGylated gold Colorectal Stimulation of oxidative Akbarzadeh
nanoparticles- cancer damage and apoptosis Khiavi et al.
ribonuclease (2020)

nanoparticles in drug delivery and cancer chemotherapy, and then,
potentials and benefits of GNPs are highlighted in the next sections. The
polymeric nanostructures have always been used in the treatment of
solid tumors, and they can be loaded with ICG and decitabine (DCT) to
mediate cancer immunotherapy. They show high and preferential
accumulation at the tumor site, and they have poor immunogenicity.
Moreover, such polymeric nanostructures can stimulate pores in the cell
membrane to enhance Ca2+ levels in the cytoplasm in cancer therapy
(Zhao et al., 2020). ZnO@CuS nanoparticles are other candidates for use
in cancer chemotherapy and phototherapy that show deep tumor
penetration and can suppress cancer-associated fibroblasts in tumor
microenvironment. Moreover, such nanoparticles enhance the produc-
tion of ROS to mediate cell death (Deng et al., 2021). The ability of
nanostructures in cancer chemotherapy can be improved, when they are
modified with aptamers for selective and targeted delivery (Li et al.,
2018). Lipid-based nanostructures have been introduced recently as
novel types for purpose of cancer chemotherapy. In addition to high
biocompatibility of such nanocarriers, they improve the pharmacoki-
netics of drugs and due to the presence of phospholipids and surfactants
in their composition, it can lead to inhibition of P-glycoprotein, a drug
efflux pump involved in chemoresistance (Ahmad et al, 2015).
Furthermore, nanostructures can combine hyperthermia and chemo-
therapy in cancer suppression (Ohtake et al., 2017). Two important
characteristics have made nanostructures promising structures in cancer
chemotherapy: one of them is high encapsulation efficiency, and the
other is the ability to control and prolong the release of drugs (Gogoi
et al., 2014). In order to increase the potential of cancer chemotherapy,
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the blood circulation time of chemotherapy drugs should be improved,
which can be obtained by nanostructures (Xu et al., 2021a). Impor-
tantly, even two different chemotherapy drugs can be loaded on nano-
structures in combination cancer therapy (Rui et al., 2017), and all of the
studies advocate the application of nanoparticles for cancer chemo-
therapy (Zhang et al., 2018; Zhao et al., 2022).

5. Nature-derived compounds for modification of gold
nanoparticles in cancer therapy

One of the important advances in the field of cancer therapy is the
modification, coating, and functionalization of GNPs with compounds
derived from nature and the environment. There are several underlying
reasons for using nature-derived compounds for coating GNPs, but it
appears that improving the biocompatibility of GNPs and simulta-
neously, increasing their cytotoxicity against tumor cells are the most
important reasons. Chitosan (CS) is a natural polysaccharide that can be
isolated from chitin through deacetylation, and when the derived
polymer is considered CS, the acetylation degree is less than 50%, and it
shows solubility in acidic solutions (Akpan et al., 2020). CS has a
cationic feature, which has resulted in its significant application.
Furthermore, the mucoadhesive characteristic of CS is vital for the
purpose of drug delivery (Yu et al., 2019). Both hydrophobic and hy-
drophilic drugs can be delivered by CS nanoparticles, and in addition to
improving the stability of pharmaceutical compounds against enzymatic
degradation, they can enhance the bioavailability and therapeutic index
of drugs, and they can enhance the action mechanism of compounds
(Shariatinia, 2019). In a recent study, GNPs were used to deliver
tamoxifen in cancer therapy, and they were also modified with
B-cyclodextrin (B-CD) and hyaluronic acid (HA)-CS. The nanocomposites
demonstrated a particle size of 82.02 nm and a zeta potential of —23.6
mV, and their shapes were spherical, triangle, and irregular. Fluores-
cence microscopy demonstrated high internalization of GNPs in breast
and colorectal tumor cells, and they displayed high cytotoxicity against
tumor cells (Kahlous et al., 2022). Cervical and breast tumors are
considered huge threats to the health of females around the world (Torre
et al., 2015). The genomic mutations that occur in these cancers cause
abnormal proliferation as well as cell death escape (Galluzzi et al.,
2015). Surgical resection, immunotherapy, chemotherapy, radio-
therapy, and hormonal therapies are considered the main tools in the
treatment of cervical and breast tumors (Nosrati et al., 2022a, 2023;
Rashidzadeh et al., 2023). However, there are adverse impacts associ-
ated with the aforementioned therapies, and due to genomic mutations
in tumor cells, they can induce apoptosis resistance (Martinez-Torres
et al., 2015; Taheriazam et al., 2023). CS/GNPs have been considered as
interesting approaches in the treatment of cervical and breast tumors,
and these nanoparticles are able to increase the generation of ROS to
stimulate cell death in tumors (Martinez-Torres et al., 2018). This
experiment adds to our understanding of cancer therapy: CS/GNPs have
the ability to induce cell death, and when used for drug delivery, they
can enhance the potential for tumor suppression.

Two important aspects regarding GNPs should be considered: A) if
GNPs can be synthesized biologically, and B) if they can be modified
with compounds from nature, these approaches are important in
improving their characteristics, including preventing aggregation and
others (Kalaivani et al., 2020). Biomimetic is defined as a field in which
nanostructures are fabricated in a biological way (Wang and Wang,
2014), and different kinds of biological sources such as plant extracts,
microorganisms, enzymes, starch, and biopolymers can be employed in
this case. In recent decades, the synthesis and fabrication of nano-
structures using marine sources have been of interest (Velusamy et al.,
2016). However, marine resources have been mainly used for other
applications, and their use for the synthesis of nanostructures is still at
the beginning stage. Marine flora, fauna, and bioactive compounds can
be utilized for nanostructure synthesis. Besides, biocompatible and
biodegradable resources, including seashells, pearls, and fish bones,
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have demonstrated great promise in nanoparticle synthesis (Jeeva-
nandam et al., 2018). On the other hand, when modification of metal
nanostructures with biopolymers is performed, their agglomeration can
be avoided (Kalaivani et al., 2020). GNPs were prepared from squilla
shell waste in a recent experiment, and their surface was then modified
with CS. The synthesized nanostructures demonstrated a spherical shape
with particle sizes in the range of 80-82 nm. Moreover, they were used
against breast tumor cells and reduced their survival rate based on the
results of MTT assay (Kalaivani et al., 2020).

GPNs can be extensively used for the purpose of phototherapy, which
will be discussed in detail in Section 5.4. However, it is worth
mentioning that biopolymer-coated GPNs can be used for purposes of
chemotherapy and phototherapy, and one of the reasons for using CS is
to increase the safety profile of nanocarriers. A recent study has pre-
pared folic acid-functionalized CS-coated GPNs for delivery of docetaxel
and paclitaxel in cervical cancer therapy. It appears that the combina-
tion of phototherapy and drug delivery is of importance in suppressing
tumor progression, but the important point is the function of CS, which
not only improves features of GPNs but also can provide an anchor for
surface modification with folic acid (Lee et al., 2022). Furthermore, the
modification of gold nanorods with CS is advantageous for cancer
chemotherapy or phototherapy (Duan et al., 2014). However, it should
be noted that internalization of nanoparticles in cells depends on their
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shape (among other factors such as particle size and charge) (Makvandi
et al., 2021), and future studies will compare which kinds of GPNs
(spherical or rod shapes) are more efficacious in cancer therapy and
drug delivery. Paclitaxel (PTX) is a common antitumor compound that
has been utilized in the treatment of breast and ovarian tumors, but it
suffers from low solubility and a poor therapeutic index (Lee et al., 2008;
Tao et al., 2012). Different kinds of nanocarriers have been used for PTX
delivery, and CS-based nanostructures are among them (Ashrafizadeh
et al., 2020b). GNPs are promising carriers for targeted delivery of PTX
in cancer therapy, but their stability is not satisfactory and can be
improved by CS oligosaccharide. Then, CS-modified GNPs can be used
for PTX delivery with a spherical shape and a particle size of 61.86 nm.
These nanocarriers increased ROS generation and mediated the loss of
mitochondrial potential to induce apoptosis in breast tumor cells (Fig. 1)
(Manivasagan et al., 2016).

Xanthan gum (XG) is a natural exopolysaccharide gum that can be
derived from the aerobic fermentation of glucose by Xanthomonas
campestris (Garcia-Ochoa et al., 2000). High availability, safety,
affordability, and biodegradability are some of the features of XG
(Rosalam and England, 2006). XG can be employed for the synthesis of
GPNs using the heating method (Pooja et al., 2014). However, a recent
experiment has synthesized GPNs using the microwave method, and
they have been capped with XG. There are COO-groups on the surface of

d(x

“”Mu
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Fig. 1. The synthesis of gold nanoparticles, loading paclitaxel and subsequent mechanism of action in tumor cells to induce apoptosis via increasing ROS generation
and impairing function of mitochondria. Reprinted with permission from Elsevier (Manivasagan et al., 2016).
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XG-coated GNPs that can be used for conjugation with doxorubicin
through electrostatic interaction. In acidic pH, doxorubicin was released
from nanocarriers, but only partially in physiological pH. The nano-
structures were internalized in tumor cells via endocytosis, and it was
shown that they have higher cytotoxicity compared to free doxorubicin
(4.6-fold higher) (Fig. 2) (Alle et al., 2020). According to these discus-
sions, the compounds obtained from nature are promising candidates for
surface modification of GNPs to improve their characteristics in cancer
therapy (Fig. 3).
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6. Gold nanoparticles and chemotherapeutic delivery
6.1. Co-delivery with antitumor agents

The drug resistance challenge has forced scientists to find new so-
lutions. Combination cancer therapy appears to be a promising approach
among various approaches for improving chemotherapy efficacy and
overall survival of cancer patients. In this framework, antitumor agents,
most of which are phytochemicals, are co-administered with chemo-
therapeutic agents to promote the sensitivity of tumor cells. This co-
application exerts a synergistic impact and induces cell death and cell
cycle arrest to prevent the proliferation of tumor cells. Although this
strategy demonstrated promising results in cancer therapy, this life-
threatening disease still has no absolute cure. Hence, more
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Fig. 2. A) The synthesis mechanism of gold nanoparticles, their endocytosis in tumor cells and their mechanism of action, B) the viability of tumor cells. Reprinted

with permission from Elsevier (Alle et al., 2020).



M. Entezari et al.

1o

> Aerobic
fermentation

Xanthomonas
campestris

Xanthan gum-coated GNPs

conjugated with Doxorubicin Squilla shell

Xanthan gum

&
5

Doxorubicin

&Y

/\ ’ )

P b P D I

.. S

Squilla

waste

Environmental Research 225 (2023) 115673

NH2 - Deacetylation NH3|
1 ———| u -

OH OH

Chitin Chitosan

Tumor suppression l l &

Tumor suppression

Tumor suppression

Fig. 3. Nature-modified GNPs in cancer therapy. The purpose of modifying GNPs with polymers and materials derived from nature, such as chitosan, is to improve
their characteristics, and one of the most important reasons is improving biocompatibility.

advancement should be made in this case. It has been shown that the co-
delivery of antitumor compounds and chemotherapeutic agents is ad-
vantageous in reversing drug resistance and suppressing cancer cell
progression. Therefore, this section is allocated to understanding the
potential of GNPs as nanocarriers for co-delivery and preventing tumor
progression. A recent experiment has prepared GNPs for the co-delivery
of 5-fluorodeoxyuridine (FUdR) and doxorubicin in breast cancer ther-
apy. The surface of GNPs was decorated by hybrid DNA strands and then
conjugated to FUdR using DNA solid-phase synthesis. At the next step,
doxorubicin molecules were loaded into duplex regions. For selective
targeting of breast cancer cells overexpressing HER2, affibody molecules
were conjugated to DNA strands on the surface of GNPs. The finished
nanoarchitecture is spherical in shape and has a high drug loading ca-
pacity. The in vitro experiment revealed the potential of GNPs for
selectively targeting HER2-overexpressing breast cancer cells and sup-
pressing their progression. Furthermore, there was a synergistic impact
between FUdR and doxorubicin, improving the fight against breast
tumor cells. This combination and the use of GNPs for co-delivery can
effectively induce apoptosis in breast cancer cells (Zhang et al., 2020a).
In addition to breast cancer therapy, GNPs have been used in the
co-delivery of antitumor agents in pancreatic tumor treatment. In this
case, PEGylated GNPs were prepared, and then doxorubicin and varli-
tinib were loaded. Such combination therapy and delivery of GNPs can
elevate antitumor activity against pancreatic cancer cells while having
high biocompatibility and being safe for healthy pancreatic cells.
Another study investigated the role of GNPs in co-delivery of
cisplatin, doxorubicin, and capecitabine in hepatocellular carcinoma
treatment. For the stabilization of GNPs, a monolayer of L-aspartate was
utilized. The aforementioned antitumor drugs were conjugated to hy-
drophilic structures in GNPs. These antitumor drug-loaded GNPs are
able to significantly diminish the progression and viability of tumor
cells, demonstrating their capacity to provide chemosensitivity

(Tomuleasa et al., 2012). To date, a few experiments have exploited
GNPs for co-delivery of chemotherapeutic agents in tumor therapy.
However, these studies obviously demonstrate the ability of GNPs to
target tumor cells and promote the intracellular accumulation of anti-
tumor compounds. There is still a long way to go in revealing the po-
tential of GNPs in co-delivery and cancer treatment. For instance,
doxorubicin and cisplatin, discussed above, use various pathways and
mechanisms to exert their antitumor activity, such as apoptosis, auto-
phagy, and DNA damage, among others (Mirzaei et al., 2021b, 2021c;
Ashrafizadeh et al., 2020c, 2021b). The studies have ignored the mo-
lecular pathways and mechanisms that are affected by this co-delivery.
Therefore, future studies should pay more attention to the underlying
mechanisms responsible for drug resistance (Najafi et al., 2020; Ashra-
fizaveh et al., 2021) and their regulation of antitumor drug-loaded
GNPs. Furthermore, surface modification of GNPs was overlooked, and
there were a few efforts to improve the stability and biocompatibility of
these nanoparticles.

One of the important problems with using GNPs in the field of drug
delivery is their toxicity (Connor et al., 2005b; Goodman et al., 2004).
Therefore, if the surfaces of GNPs are coated with biocompatible poly-
mers, it is possible to improve their safety profile. On the other hand, the
benefit of co-delivery is reducing the concentration of drugs, which
decreases adverse impacts, avoids chemotherapy resistance, and im-
proves the therapeutic index. Therefore, an experiment has developed
PEGylated hybrid gold/nanogels for the co-delivery of doxorubicin and
6-mercaptopurine in cancer therapy. Because of the ERP effect and the
presence of glutathione (GSH), these hybrid nanocarriers can increase
accumulation at tumor tissue, resulting in cargo release in cancer cells.
Furthermore, hybrid gold/nanogels are able to release drugs in response
to pH due to the presence of disulfide bonds, and according to their high
cytotoxicity, they can significantly decrease tumor growth (Fig. 4)
(Ghorbani and Hamishehkar, 2018).
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Notably, since doxorubicin is widely used for the purpose of cancer
therapy, there is a high chance for resistance development, which is why
studies have focused on its delivery by nanoparticles and in cancer
therapy (Mahabady et al., 2022; Hashemi et al., 2022b). Importantly,
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various kinds of nanoparticles, such as hyaluronic acid-based nano-
architectures, have been shown to be advantageous in increasing
doxorubicin’s cytotoxicity and preventing drug resistance (Mirzaei
et al., 2021a). In breast tumor cells, there is a high expression level of
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Fig. 5. The application of GNPs for purpose of co-delivery in cancer therapy. Combination cancer therapy has emerged as a promising approach in improving tumor
cell elimination, and GNPs can encapsulate drugs in their core or on their surface.
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HER2, and if GNPs are decorated with ligands targeting HER2, the
ability of nanostructures to suppress tumors is significantly enhanced.
For this purpose, GNPs have been modified with affibody-DNA hybrid
strands, and then 5-fluorodeoxyuridine was conjugated to these strands
via DNA solid-phase synthesis. Furthermore, doxorubicin was embedded
into duplex regions of DNA strands on the surface of GNPs. The GNPs
were stable with a spherical shape, and they showed high tumor sup-
pressor activity against HER2-overexpressing breast tumor cells, and
due to co-delivery, synergistic cancer suppression was provided (Zhang
et al., 2020a). The essential part of co-delivery is that this strategy can
also be used for the co-delivery of two antitumor agents that have been
derived from nature. In previous studies, doxorubicin and other
chemotherapy compounds have been utilized in cancer therapy, but
since plant-derived natural products suffer from poor bioavailability,
using GNPs can be beneficial in improving their therapeutic index in
cancer therapy. Sulforaphane (SNF) suppresses the Akt/mTOR axis to
reduce the growth and invasion of bladder tumor cells (Xie et al., 2022);
furthermore, it reduces MMP-9 levels to decrease the metastasis of
gastric cancer (Li et al., 2022). Curcumin, on the other hand, is a
naturally occurring compound with a high potential for reducing tumor
cell sensitivity to chemotherapy (Abadi et al., 2022; Ashrafizadeh et al.,
2020d; Wei et al., 2022). PEGylated iron oxide-gold core shell nano-
structures were prepared for the co-delivery of curcumin and SFN. The
prepared nanostructures demonstrated an 80.57 nm particle size and a
zeta potential of —15.4 mV. The loading efficiency for curcumin and SFN
was 17.32% and 16.74%, respectively. Furthermore, the encapsulation
efficiencies for curcumin and SFN in nanostructures were 83.72% and
81.2%, respectively. The cytotoxicity of these antitumor drugs increases
after delivery by nanostructures, and they are able to suppress metas-
tasis and stimulate apoptosis and necrosis (Fig. 5) (Ashrafizadeh et al.,
2022).

6.2. Combined gene therapy and chemotherapy

In Section 3, the challenges in the field of chemotherapy were dis-
cussed, and it was noted that the drawbacks and limitations of
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chemotherapy, such as resistance, can also be solved with the help of
gene therapy. More importantly, the application of gene therapy has its
own problems, such as a lack of appropriate internalization in tumor
cells and targeted delivery, that can be solved by nanostructures. The
use of GNPs has been shown to be promising in terms of providing
synergistic gene- and chemotherapy. The dendrimer-entrapped GNPs
have been shown to be beneficial for the co-delivery of miR-21 inhibitors
and gemcitabine in pancreatic tumor suppression. The resulting nano-
carriers can be internalized in tumor cells, and interestingly, their
cellular uptake can be improved by ultrasound-targeted microbubble
destruction (UTMD) to elevate cell permeability. Furthermore, this co-
delivery led to a reduction in the ICsy value of gemcitabine, and in
vivo, it caused a decrease in tumor growth and volume and enhanced
blood perfusion in xenograft models (Lin et al., 2018). Since miR-21
functions as an oncogene in cancer chemotherapy, its delivery by
GNPs has been tried in various studies (Ren et al., 2016). Upregulation
of miR-21-5p leads to down-regulation of PTEN and TIMP3 and induces
doxorubicin resistance in gastric cancer (Chen et al., 2018a). Silencing
miR-21 inhibits prostate tumor cell growth and increases doxorubicin
sensitivity (Zhao et al., 2021). Therefore, miR-21 inhibitor delivery by
nanostructures and their combination with doxorubicin improve the
potential of cancer chemotherapy (Raniolo et al., 2021). In
NIR-responsive hollow GNPs, both doxorubicin and miR-21 inhibitor
have been loaded, and at the first step, the release of miR-21 inhibitor
occurs to enhance drug sensitivity, and then NIR leads to the collapse of
GNPs to release doxorubicin in effective cancer chemotherapy. This
co-delivery exerts synergistic impact and promotes antitumor capacity
by 50-fold. Moreover, upon intravenous administration of cargo-loaded
hollow GNPs, they accumulated at the tumor site and reduced tumor
progression (Fig. 6) (Ren et al., 2016). Therefore, co-delivery of miRNAs
and chemotherapy agents by GNPs is beneficial in cancer therapy, and
one of the limitations is the lack of significant focus on the molecular
pathways that are affected after this co-delivery in cancer
chemotherapy.

Although GNPs have shown good efficacy in miRNA delivery, most
emphasis in experiments is on the co-delivery of siRNA and
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chemotherapy agents in cancer therapy. STAT3 pathway has been
considered oncogenic in various human cancers due to its function in
modulating proliferation, metastasis, and therapy response as well as its
potential in interaction with other pathways (Garg et al., 2021; Ashra-
fizadeh et al., 2020e). Targeting STAT3 with nanoparticles has been
shown to be beneficial in cancer therapy. On the other hand, STAT3
plays a significant role in melanoma progression, and its inhibition by
luteolin can enhance melanoma suppression (Li et al., 2022). Further-
more, STAT3 increases glycolysis in melanoma via upregulation of
PKM2 (Zhang et al., 2022). An experiment has focused on the
co-delivery of STAT3-siRNA and imatinib in melanoma therapy. This
co-delivery by GNPs decreased protein levels of STAT3 to impair
tumorigenesis in melanoma, and based on in vivo results, it significantly
reduced tumor weight and volume (Labala et al., 2017). However, focus
has been placed on the co-delivery of doxorubicin and siRNA by GNPs in
cancer therapy. The reason is the high popularity of doxorubicin in
cancer chemotherapy, and its action mechanism is based on topoisom-
erase II suppression to reduce DNA replication. However, due to the
presence of doxorubicin resistance, interest has been directed towards
using nanoparticles for the delivery of doxorubicin in cancer suppres-
sion. The octreotide-conjugated gold nanorods have been applied for the
co-delivery of doxorubicin and siRNA in effective cancer therapy, and in
addition to demonstrating uniform size distribution, these nano-
structures also demonstrate pH-sensitive release of cargo. The conju-
gation with octreotide enhances the internalization of gold nanorods in
tumor cells, and they suppress proliferation (Xiao et al., 2012).
Doxorubicin is a popular agent in pancreatic cancer therapy, but
since resistance has been developed, there have been attempts to
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increase drug sensitivity. Autophagy inhibition by danthron impairs
pancreatic cancer progression and elevates doxorubicin sensitivity
(Chen et al., 2019). Moreover, deguelin has been associated with auto-
phagy inhibition and enhanced doxorubicin sensitivity (Xu et al., 2017).
One of the promising strategies is the combination of siRNA and doxo-
rubicin and delivery by GNPs in pancreatic cancer therapy. Gold
nanorods have been utilized in the co-delivery of doxorubicin and siRNA
in pancreatic cancer chemotherapy, and exposure to 665 nm light leads
to reducing tumor growth by 90%. Moreover, co-delivery by gold
nanorods leads to down-regulation of K-Ras to induce cycle arrest in
pancreatic tumor cells and by combining gene-/chemo-therapy, it de-
creases tumor progression (Yin et al., 2015). These studies highlight the
fact that when it comes to understanding the biological mechanisms
involved in increasing the progression of tumor cells and decreasing the
potential of chemotherapy, siRNA and co-delivery with antitumor
compounds can provide promising results in cancer therapy, such as
what has been observed in the delivery of EGFP-siRNA and erB2-siRNA
with doxorubicin using GNPs in cancer therapy (Kotcherlakota et al.,
2017; Kumar et al., 2017). Fig. 7 provides a summary of gene and drug
co-delivery by GNPs in cancer therapy.

6.3. Combined phototherapy and chemotherapy

Phototherapy is the use of light as a tool to halt tumor cell progres-
sion. Phototherapy is categorized into two groups, including photo-
thermal therapy (PTT) and photodynamic therapy (PDT), that have their
own distinct features (Zhen et al., 2019; Thangudu and Su, 2021; Jan
et al., 2022). Phototherapy, as a minimally invasive therapeutic
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Fig. 7. The ability of GNPs in co-delivery of drugs and genes in cancer therapy. The genes can be degraded by enzymes during bloodstream circulation, but by
loading in GNPs, they can be protected, and they regulate gene expression levels with high efficiency.
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approach, focuses on the use of photo-responsive factors to apply irra-
diation for the elimination of tumor cells with minimal side effects on
normal and healthy tissues (Luo et al., 2016). The functions of PDT and
PTT in triggering cancer cell death are a little different. In PTT, a
photo-absorbing compound is utilized that, under NIR irradiation,
causes heat generation and induces tumor ablation (Jiang et al., 2018).
In PDT, the used photosensitizers generate reactive oxygen species
(ROS) under a specific wavelength that can be utilized for oxidizing
biomolecules and suppressing tumor progression (Xu et al., 2017; Lucky
et al., 2015; Shen et al., 2016). The current section aims to accelerate
cancer chemotherapy by using GNP-mediated PDT and PTT (Fig. 8). A
question may come into mind: if the problem related to lack of specific
delivery and low accumulation of tumor cells in cancer tissues can be
solved using nanostructures, what is the necessity of using PDT or PTT
along with nanoparticle-mediated chemotherapy? The answer is similar
to the goal of co-delivery of drugs and genes in cancer therapy in that a
combination of chemotherapy and phototherapy can improve the po-
tential of cancer therapy. For instance, paclitaxel is one of the chemo-
therapeutic agents used in cancer therapy. However, increasing
evidence has revealed that dysregulation of molecular mechanisms can
lead to the development of paclitaxel resistance in tumor cells (Wang
et al., 2022a; Ren et al., 2022; Wu et al., 2022). For increasing the po-
tential of paclitaxel in cancer therapy, paclitaxel-loaded GNPs were first
prepared, and then they were modified with a polydopamine layer to
increase their stability. The resulting nanocarriers demonstrated high
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biocompatibility and cellular uptake, and they were able to induce
apoptosis and decrease the expression level of P-gp. Moreover, exposure
to NIR irradiation led to the release of paclitaxel, and by providing PTT,
it caused mitochondrial damage, oxidative stress, DNA injury, and
upregulation of pro-apoptotic proteins including caspase-3, p53, and
Bax, accelerating tumor suppression (Zhan et al., 2022). It appears that
when modification of GNPs is performed, their selectivity towards tumor
cells is enhanced, which is beneficial for the purposes of PTT and
chemotherapy. The CD44-targeted GNPs have been prepared for the
delivery of doxorubicin in breast cancer therapy and provide PTT with a
particle size of 71.34 nm. The process of loading doxorubicin in GNPs
was performed via electrostatic interaction with an entrapment effi-
ciency of 75%, and after exposure to 808 nm irradiation, it caused PTT
that exerted synergistic impact with chemotherapy in ROS production,
apoptosis induction, and providing tumor ablation (Kalyane et al.,
2022). Surprisingly, the findings are not limited to in vitro experiments;
in vivo studies have revealed that using GNPs for combination photo-
and chemotherapy is important in cancer therapy (Yang et al., 2022).
However, the use of nanoparticles is more than the simple delivery of
chemotherapy agents in cancer therapy, and nanostructures can be used
for suppressing the progression of drug-resistant tumor cells (Choe et al.,
2021).  Yolk-shell-structured nanoparticles possess a unique
yolk-void-shell configuration and display important characteristics such
as low density, a large surface area, good loading ability, and hollow
outer shells (Purbia and Paria, 2015). In a recent effort,
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yolk-shell-structured silica nanocapsules encapsulating aggregated gold
nanospheres (aAuYSs) have been utilized in suppressing the progression
of drug-resistant ovarian tumor cells. In the silica interior of aAuYSs,
GNPs were loaded, and then they showed absorbance of 808 nm laser
irradiation for PTT. The induced cell death in doxorubicin-resistant
ovarian tumor cells, as well as further investigation, revealed that
these nanostructures, in combination with doxorubicin, can have a
synergistic effect in PTT and chemotherapy of ovarian tumors (Choe
et al., 2021).

More investigation has revealed that when drug nanocrystals are
decorated with GNPs, they can mediate PTT, which is important for
overcoming chemoresistance (Wang et al., 2022b). The field of combi-
nation therapy has been improved by drug nanocrystals, which have a
high surface area that is beneficial for improving the bioavailability of
drugs. Moreover, drug nanocrystals are able to trigger the EPR effect,
providing passive targeting to cancer sites (Zhou et al., 2016; Zhan et al.,
2017). Drug nanocrystals are also beneficial in reversing P-gp-mediated
chemoresistance and preventing the efflux of drugs (Da Silva et al.,
2017; Wang et al., 2011). In a recent effort, the surface of drug nano-
crystals has been modified with GNPs, and in addition to the delivery of
camptothecin, they stimulated apoptosis and reduced P-gp expression
that is due to the combination of PTT and chemotherapy (Wang et al.,
2022b).

According to these studies, it is recommended to use GNPs for the
purpose of photo- or chemotherapy to impair the progression of tumor
cells and sensitize them to anticancer drugs (Faid et al., 2022; C et al.,
2021; He et al., 2022; Huang et al., 2021; Mapanao et al., 2021; Liu
et al., 2020; Hou et al., 2019; Yang et al., 2017; Zhu et al., 2018a). Since
GNPs possess good PTT efficacy and previous discussions revealed that
they are capable of providing targeted delivery of anticancer drugs,
future studies may focus on the co-delivery of drugs and genes as well as
PTT in cancer therapy, which is known as “photo-/chemo-/gene-therapy
of cancer.” Moreover, major emphasis is on the role of GNPs in medi-
ating PTT, but there are a few studies showing the role of GNPs in
providing PDT in cancer suppression. In an experiment, novel kinds of
gold nanoclusters have been developed based on tumor-targeted
Ce6-doxorubicin-GNCs-MMP2 polypeptide nanoparticles (CDGM NPs)
for providing chemo- and phototherapy. The click chemistry was used
for the synthesis of nanostructures, and both Ce6 and doxorubicin were
loaded for purposes of PDT and chemotherapy, respectively. Due to the
EPR effect, nanostructures demonstrate high accumulation at the tumor
site, and modification with polypeptides has also increased their selec-
tivity towards cancer cells. The nanostructures have also been modified
with PEG to increase their biocompatibility and blood circulation time.
The nanoparticles were pH-sensitive, and exposure to low pH levels can
result in cargo release due to the presence of acid-sensitive attachment
between doxorubicin and the cis-aconitic anhydride (CA) that is the
cis-aconityl linkage. In order to reduce tumorigenesis, these nano-
clusters induce both chemotherapy and PDT (Xia et al., 2018). More
importantly, GNPs can be used for the purposes of PTT, PDT, and
chemotherapy in cancer suppression (Xu et al., 2018). When irradiation
with a wavelength of 630 nm occurs, it leads to ROS generation that can
suppress tumorigenesis and promote the potential of chemotherapy in
cancer therapy (Bhattacharya et al., 2022).

6.4. Stimuli-responsive devices

6.4.1. pH-responsive

The discussion in previous sections revealed that GNPs are promising
candidates for cancer chemotherapy by mediating targeted delivery,
providing a platform for co-delivery, and triggering PTT and PDT. The
use of smart nanocarriers in tumor suppression is one of the most recent
advances in cancer therapy. The smart nanostructures can be responsive
to endogenous or exogenous stimuli, and one of them is pH. The tumor
microenvironment has an acidic pH that is due to glycolysis and the high
proliferation of cancer cells, while the pH in normal and healthy tissues
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is near 7.4. Therefore, if linkages and bonds in GNPs can be degraded at
a pH level near the tumor microenvironment, they can release cargo in
response to pH, thereby providing targeted cancer therapy. In an
experiment, GNPs were fabricated that were able to selectively target
angiogenic endothelial cells through the identification of avf3 and
folate for increasing cellular uptake in tumor cells. The conjugation of
doxorubicin on the surface of GNPs was conducted by a hydrazone bond
that is pH-sensitive. In response to acidic pH, these GNPs release
doxorubicin, and upon exposure to NIR irradiation, it causes PTT that is
beneficial for apoptosis induction, angiogenesis inhibition, and prolif-
eration suppression in melanoma (Wang et al., 2019). It appears that the
ability of nanostructures to respond to specific features of tumor
microenvironment is critical for achieving desirable drug delivery
(Wang et al., 2017; Luo et al., 2017; Bigham et al., 2022). When nano-
structures respond to pH-level of tumor microenvironment, the process
of drug delivery can be improved (Prescott et al., 2000). There are a
number of acid-responsive linkages, including hydrozone bond (Praba-
haran et al., 2009; Yuan et al., 2010), benzoic imine bond (Deng et al.,
2015; Zeng et al., 2017), and cis-aconityl linkage (Srinophakun and
Boonmee, 2011; Zhu et al., 2010) that render the characteristic of
pH-responsiveness to nanocarriers. It has been reported that conjugation
of doxorubicin to surface of dendrimers can lead to pH-sensitive features
due to the presence of cis-aconityl linkage (Kratz et al., 2002; Di Stefano
et al., 2004). In an experiment, PAMAM dendrimers were functionalized
with folic acid, and then doxorubicin was conjugated to the dendrimers
via cis-aconityl bond. At the next step, the prepared doxorubicin den-
drimers were entrapped by GNPs. The Au core size was 2.8 nm, and they
showed high stability. Due to presence of cis-aconityl linkage, the
nanostructures released doxorubicin in a pH-sensitive manner, which
led to site-specific drug release and effective cancer therapy (Fig. 9) (Zhu
et al., 2018b).

In the previous section, it was discussed that GNPs can be used for
PTT and PDT. Now, there has been effort put into developing GNPs that
demonstrate PTT impact and pH-responsive function. Doxorubicin has
been conjugated to gold nanorods via a hydrazone bond that is pH-
sensitive and can release the drug in the tumor microenvironment.
The doxorubicin-loaded gold nanorods internalize in HepG2 cells via
endocytosis, and after exposure to NIR irradiation (808 nm wavelength),
they cause PTT along with chemotherapy in cancer suppression (Chen
et al., 2018b). Metal-organic frameworks (MOFs) are considered porous
materials that can be utilized for the encapsulation of drugs, fluorescent
molecules, and nanostructures (Chalati et al., 2011; Della Rocca and Lin,
2010, 2010deKrafft et al., 2009; Eddaoudi et al., 2002; Govindaraju
et al.,, 2018; Luo et al., 2018). In an experiment, doxorubicin-loaded,
ZIF-8-encapsulated GNPs were prepared as pH-sensitive nanocarriers
for cancer therapy. Due to loading into ZIF-8, doxorubicin and GNPs did
not show release in neutral medium and prevented toxicity in normal
cells. Importantly, exposure of ZIF-8 to low pH levels causes the release
of GNPs and DOX that cause PDT and chemotherapy, respectively
(Zhang et al., 2020c). Another critical aspect is the creation of hybrid
nanocarriers with properties of two nanostructures. In a recent
approach, a micelle-GNP hybrid nanosystem was developed for doxo-
rubicin delivery with an encapsulation efficiency of 41-61% that caused
drug release at acidic pH levels, and both in vitro and in vivo experi-
ments highlighted the function of this hybrid nanosystem in cancer
therapy (Lin et al., 2017). Therefore, pH-sensitive GNPs are highly
recommended for drug delivery and cancer suppression.

6.4.2. Redox-responsive

Overall, nanobiotechnology is a growing field that aims at improving
drug delivery, gene therapy, and tumor imaging (Liu et al., 2007; Dizaj
et al., 2014). When nanoparticles are applied for the purpose of drug
delivery, they are beneficial in protecting the entrapped drug and can
result in prolonged drug release with low adverse impacts (Kumar-
aswamy et al.,, 2014; Kissling et al., 2016; Nosrati et al., 2022b).
Recently, precision medicine has been a hot topic, and it aims to develop
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nanobiomaterials for therapeutic and diagnostic purposes (Lu et al.,
2018). Therefore, exploitation of unique tumor microenvironment fea-
tures can help in providing effective stimulus-responsive nanocarriers.
In addition to pH, the redox imbalance present in tumor microenvi-
ronment can be utilized for the development of stimulus-responsive
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nanocarriers, and it has been reported that DM1-doped porous gold
nanoshells can be used for redox-sensitive delivery of antitumor drugs in
breast cancer therapy. The resulting nanostructures had a particle size of
78.6 nm, and they showed good colloidal stability with pH-sensitive
drug release. The decoration of gold nanoshells was performed with
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mPEG and trastuzumab; the latter is for providing selective delivery by
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7. Conclusion and remarks

binding to the HER2 receptor. The nanocarriers were able to stimulate

apoptotic cell death due to tubulin stimulation, caspase-3 activation,
and HSP70 down-regulation. Moreover, nanostructures demonstrated
inhibition of M2 macrophages and suppressed the metastasis of breast
2021b). In another effort, in-situ polymerized
polyplatinum (IV)-coated gold nanorods have been designed that release
cargo in response to redox state, and they demonstrated improved
cancer site accumulation after systemic administration, leading to
effective cancer chemotherapy and phototherapy (Fig. 10) (Guo et al.,

tumor cells (Xu et al.,

2021).

6.4.3. Multifunctional

The light-responsive GNPs were discussed in the section on photo-
therapy (section 5.4). One of the advances in the development of smart
nanostructures is the combination of some stimuli to increase the po-
tential of cancer therapy. In one approach, two endogenous stimuli can
be combined for the development of smart GNPs. Redox- and pH-
sensitive GNPs have been developed as smart nanoplatforms for the
delivery of doxorubicin, methotrexate, and 6-mercaptopurine with
12%, and 49%, respectively, and this
loading was performed by ionic interaction. Furthermore, the cytotox-
icity results demonstrated the high anticancer activity of these nano-
structures (Ghorbani and Hamishehkar, 2017). In another approach, pH
and light as internal and external stimuli, respectively, can be utilized
for the purpose of cancer therapy. The pH and light sensitive GNPs were
conjugated with thiolated poly (ethylene glycol)-biotin to increase
sensitivity to tumor cells by upregulating the biotin receptor. Then,
doxorubicin was conjugated to DNA decorated on the surface of GNPs;
this bond is pH-sensitive (pH 5), and in response to irradiation at 808
nm, it can release cargo. The nanomaterials demonstrated high cellular
uptake and prevented the efflux of drugs in drug-resistant tumor cells
(Zhang et al., 2016). Fig. 11 shows stimuli-responsive GNPs in cancer

entrapment efficiencies of 37%,

therapy.
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The current review focused on the role of GNPs in cancer chemo-
therapy. The reason for highlighting this aspect is because therapy
failure has been a significant issue in the treatment of cancer patients,
and physicians have advocated for the development of innovative stra-
tegies to overcome chemoresistance. The existence of MDT has led to the
development of chemoresistance to several antitumor compounds;
consequently, the introduction of new anticancer medications will not
be of much assistance, since cancer cells can acquire resistance again.
This paper focuses on the use of GNPs for the delivery of chemotherapy
drugs in cancer therapy. One of the most significant advantages of GNPs
is their ability to provide a platform for drug co-delivery as well as drug
and gene co-delivery. At the first approach, two types of antitumor
compounds with different modes of action are loaded into GNPs, and
then these nanoparticles then facilitate their co-delivery to inhibit the
growth of tumor cells. Next, a molecular pathway that is responsible for
drug resistance development, such as STAT3, is selected, and then its
suppression by gene delivery can increase sensitivity to chemotherapy.
However, because GNPs have poor biocompatibility, there has been an
effort to improve their safety by using nature-derived materials, and
some agents, such as chitosan, have been used for this purpose, which
not only increase biocompatibility but also enhance cytotoxicity to-
wards tumor cells. Moreover, when GNPs are modified with compounds
such as hyaluronic acid or folate, their selectivity towards tumor cells
increases, hence enhancing the cytotoxicity of these nanostructures.
Since GNPs are able to absorb the irradiation, they can be used for PTT
and PDT; in PTT, they generate heat by increasing the drug sensitivity of
tumor cells, and in PDT, they increase ROS generation by mediating cell
death. Moreover, smart GNPs, including light-, redox-, pH-, and multi-
responsive nanostructures, have been developed for the purpose of
cancer therapy and targeted delivery of chemotherapy agents that
improve accumulation at the tumor site. Since these discussions approve
the functionality of GNPs in cancer therapy, future studies can focus on
clinical translation and improving the survival rate of cancer patients.

The cancer therapy field requires combination of different disciplines
to obtain an outcome that is satisfactory for cancer patients. The current
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manuscript did not focus on a certain type of cancer, but it proposed
some methods and strategies that can be used for all cancers, regardless
of their kinds. One of the main reasons for choosing GNPs for cancer
therapy is that such nanostructures have intrinsic cytotoxicity against
tumor cells. Hence, when they are applied along with drugs in cancer
therapy, it can lead to a synergistic impact. However, conventional GNPs
are no longer a hot spot for cancer therapy since multifunctional, smart
and targeted kinds of GNPs have been introduced and designed. Each
cancer type may demonstrate upregulation of some of the specific re-
ceptors on its surface, such as folate receptor, CD44 and others. There-
fore, conventional GNPs should be modified with ligands targeting such
receptors in cancer therapy to enhance internalization. This approach is
highly suggested during cancer chemotherapy, as chemotherapy drugs
have side effects on normal cells and tissues, and when their targeted
delivery is provided, their side effects reduce. However, the clinical
application of GNPs still requires much investigation. This is due to some
toxicological studies showing that GNPs may display toxicity on normal
cells, and therefore, modification with natural and biopolymers to
improve their biocompatibility is recommended.

After the introduction of combination cancer therapy, there was a
hope that therapy failure in cancer patients would be solved. Although
combination cancer therapy brought much hope to the treatment of
patients, it was found that there is still a need for progress in this therapy
and that its benefits for the treatment of cancer patients can be
improved. The concept of nanomedicine is that it can improve the po-
tential of both monotherapy and poly-chemotherapy in cancer sup-
pression. Therefore, even if combination cancer therapy has promising
results, its efficacy can be improved by loading it on nanoplatforms such
as GNPs. In addition, GNPs can mediate the co-delivery of drugs or drug/
gene combinations in cancer therapy. Another important aspect of GNPs
is that, due to their ability to absorb light, they can mediate PDT and PTT
in combination cancer therapy. All of these discussions are in line with
the benefits of using GNPs in cancer therapy, and again, their clinical
application still requires improving their biocompatibility.
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