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A B S T R A C T   

The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs. 
In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of 
cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous 
properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This 
review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing 
GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform 
for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a syner
gistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity. 
Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemothera
peutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at 
the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been 
performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor 
cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining 
their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs 
is contingent on enhancing their biocompatibility.   
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1. Introduction 

After heart disease, cancer has been highlighted as a life-threatening 
hazard (Park and Han, 2019; Heron, 2012). Although our knowledge 
and information about cancer biology have significantly improved, we 
still have a long way to go before curing cancer. Each cancer cell has 
unique properties distinct from normal cells, and such features can be 
targeted for the purpose of cancer therapy. Tumor cells display accu
mulation of genomic mutations during their progression, and some of 
the factors may increase their metastasis and reaching to a secondary 
site (Pastushenko and Blanpain, 2019). Furthermore, tumor cells show 
dysregulation of non-coding RNAs (Anastasiadou et al., 2018), and in 
spite of understanding the biological aspects of tumors, their cure is still 
a problem. 

Nanoparticles are structures with a size in the range of nanometers 
(less than 100 nm), and throughout the past several decades, these 
carriers have opened a new window in the treatment of various diseases, 
particularly cancer. Nanomedicine is a growing field, and new discov
eries in this field might considerably aid scientists in overcoming cancer, 
one of the most lethal and deadly diseases (Garbayo et al., 2020; Irvine 
and Dane, 2020). Because cancer is a complicated disease, it is unlikely 
for a single discipline to find a cure; thus, scientists have focused on 
merging biology, engineering, and other disciplines to make significant 
progress in cancer treatment (Dalpiaz et al., 2020; Venkatas and Singh, 
2020). Furthermore, there are biological issues that can be resolved with 
nanotechnology and bioengineering. To date, nanoparticles have been 
fabricated for drug delivery (Ertas et al., 2021), gene delivery (Li et al., 
2020), and the co-delivery of genetic tools and antitumor compounds 
(Yang et al., 2020a). One of the issues with cancer is the late detection in 
advanced stages, when cancer cells are no longer sensitive to therapies; 
thus, nanotechnology can play a crucial role by facilitating timely cancer 
diagnostics (Li et al., 2020; Alafeef et al., 2020; Abbasi et al., 2022). It is 
worth mentioning that nanocarriers have opened the way for the 
treatment of cancer patients (Khoobchandani et al., 2020). Finally, 
nanotechnology has found its way to precision cancer medicine (Adir 
et al., 2020). 

For decades, chemotherapy has been the first option in the treatment 
of cancer patients, and it is generally preferred to surgery due to its 
minimally invasive nature and its efficacy in cancer elimination at 
advanced stages, when cancer cells have diffused to different organs of 
the body and it is impossible to use surgery. However, chemotherapy has 
its own issues, including side effects and chemoresistance (Wang et al., 
2020; Shiokawa et al., 2020; Przanowski et al., 2020; Salehiabar et al., 
2023; Hashemi et al., 2022a). Regardless of the negative consequences, 
drug resistance is a growing problem today and the leading cause of 
failure in cancer treatment (Davar et al., 2021). Although a variety of 
strategies have been developed for overcoming chemotherapy resis
tance, this condition is still causing a high rate of death among cancer 
patients, and novel tools should be considered in this way. 

In the current review, we focus on using gold nanoparticles (GNPs) as 
one of the most well-known metal nanocarriers for delivery of chemo
therapeutic agents in cancer therapy. First, we provide an overview of 
GNPs and their biomedical applications to demonstrate how these 
nanostructures have paved the way for disease treatment, with a focus 
on cancer. Then, currently applied chemotherapeutic agents—the most 
important ones—are discussed, and an overview of current problems 
with chemotherapy is provided. Drug resistance is the most important 
one. Then, we focus on the delivery of chemotherapeutic agents by 
GNPs. The co-delivery of chemotherapeutic agents with genetic tools or 
other antitumor compounds can be performed by GNPs. Stimuli- 
responsive devices based on GNPs have been developed for the tar
geted delivery of chemotherapeutic agents. Surface modification of 
GNPs by polymers has been conducted to enhance their selectivity to
wards cancer cells. Finally, theranostic potential and hybrid nano
composites developed for delivery of chemotherapeutic agents are 
discussed to shed some light on the potential of GNPs as promising 

nanocarriers in cancer elimination. 

2. Gold nanoparticles: an overview 

GNPs are widely used for drug and gene delivery among inorganic 
nanomaterials because to their unique properties, including shape and 
size tunability, surface modification, and controlled release (Zhang 
et al., 2020a). GNPs have been found to possess high biocompatibility 
and biological inertia (Zhao et al., 2018; Connor et al., 2005a; Bhatta
charya and Mukherjee, 2008; Kim et al., 2009). Typically, GNPs have a 
particle size in the range of 1–150 nm and can load drugs in their cavity 
or on their surface (Kim et al., 2009; Kong et al., 2017; You et al., 2010; 
Ajnai et al., 2014). Due to the high surface-to-volume ratio of GNPs, 
however, experiments favor conjugation of drugs on the surface of 
GNPs, resulting in the creation of pro-drugs (Biener et al., 2009). GNPs 
are being employed in a variety of sectors, including life sciences, 
analytical chemistry, genetic engineering, the food industry, medicine, 
and clinical therapy (Howes et al., 2014). To date, a variety of methods 
have been applied for the synthesis of GNPs, such as top-down and 
bottom-up techniques and physical techniques such as grinding and 
etching. However, physical techniques are not recommended due to 
their complexity and cost (Howes et al., 2014; Saha et al., 2012; Li and 
Yang, 2013; Zezin et al., 2020). Chemical methods and Brust-Schiffrin 
are other kinds of strategies that can be used for the synthesis of 
GNPs, both of which have drawbacks, including toxicity to the envi
ronment and biosystems (Panigrahi et al., 2004). In spite of different 
strategies to develop GNPs, there are still issues with their large-scale 
production due to the high cost of materials, chemicals, and energy, as 
well as the high use of organic solvents, necessitating the development 
of novel methods for their affordable synthesis with minimal environ
mental impact. For the synthesis of GNPs, an alternate procedure was 
utilized. This method relies on nature as a rich supply of molecules and 
substances with different properties useful for producing safe and 
inexpensive GNPs. Numerous methods, including one-pot hydrothermal 
chemical reduction, seed growth-assisted co-precipitation, microfluidic 
droplets, etc. have been proposed for the green synthesis of GNPs with 
low cost, high biocompatibility, and partial toxicity for environment and 
have recently been reviewed by Qiao and Qio (Qiao and Qi, 2020). 
Various forms of GNPs, such as spherical GNPs, gold nanorods, gold 
nanoshells, gold nanoclusters, GNP-liposomal hybrid nanocarriers, etc., 
have been produced for biomedical applications (Bromma and Chi
thrani, 2020). Each nanocarrier has its own advantages in disease 
therapy, but spherical GNPs are the most commonly used due to their 
ease of synthesis, affordable production, controlled size, and capacity of 
surface modification (Yeh et al., 2012; Stiufiuc et al., 2013). In cancer 
therapy, spherical GNPs can be used for antitumor drug administration 
or X-ray irradiation (Sztandera et al., 2019). As gold nanorods and gold 
nanoshells possess a high near-infrared (NIR) cross-section, they are 
favored over other types of GNPs for cancer hyperthermia (Huff et al., 
2007; Rastinehad et al., 2019). 

GNPs have attracted much attention in the field of cancer therapy 
and diagnosis. Significant effort has gone into determining the true 
potential of these nanostructures in cancer eradication. GNPs can aid in 
the early detection of cancer in its early stages. It has been reported that 
ultrasmall gold quantum clusters have a low circulation time in blood 
and can effectively internalize at tumor site with low accumulation in 
reticuloendothelial system. In respect to producing contrast for fluo
rescence, X-ray computed tomography, and magnetic resonance imag
ing (MRI), and owing to their retention at tumor sites, they can be 
applied for the diagnosis of cancer (Yang et al., 2020b). Furthermore, 
radiolabeled GNPs have been developed for cancer diagnosis (Silva 
et al., 2020). Since GNPs can provide simultaneous cancer imaging and 
treatment, they have been extensively applied as theranostic agents. 
Decorating carbon nanotubes with magnetic and GNPs, for example, 
results in the preparation of therapeutic nanocarriers capable of imaging 
(MRI, for example) and providing thermotherapy to kill cancer cells 
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(Saghatchi et al., 2020). The next step in using GNPs in cancer therapy is 
making changes in their surface chemistry to enhance their selectivity 
towards cancer cells. It has been revealed that cancer cell 
membrane-coated GNPs can provide selective homotypic targeting of 
cancer cells (Sun et al., 2020). Different strategies, such as using poly
mers including chitosan, hyaluronic acid, alginate, fucoidan, aptamers, 
DNA linkers, etc. have been applied for surface modification of GNPs, 
and conjugating compounds on their surface (Zhang et al., 2020b; 
Khademi et al., 2020; Chen et al., 2020a; Manivasagan et al., 2019; 
Jacinto et al., 2020). Furthermore, GNPs can target molecular pathways 
that are responsible for cancer progression. Drug-conjugated GNPs 
suppress PI3K/Akt signaling to inhibit breast cancer viability and 
growth (Mahmoud et al., 2020). Taking everything together, GNPs are 
promising candidates in cancer therapy and diagnosis (Ding et al., 2020; 
Hao et al., 2020; Zhang et al., 2021; Fan et al., 2020; Chen et al., 2020b; 
Norouzi, 2020), and in the next section, we mechanistically discuss the 
role of these nanocarriers in cancer chemotherapy. 

3. Chemotherapy: current status and promises 

One of the foremost limiting factors in reaching a satisfactory level 
for the treatment of cancer patients is cancer drug resistance (Vasan 
et al., 2019). Importantly, cancer drug resistance shares many similar
ities with drug resistance during infections in that in both fields (cancers 
and infectious diseases), intrinsic and extrinsic aggressors participate in 
the emergence of drug resistance. When cancer cells develop resistance 
to therapy, cancer patients face another challenge: relapse and recur
rence. One of the primary solutions for overcoming drug resistance in 
human cancers is to avoid single chemotherapy and instead use a variety 
of chemotherapy compounds with different action mechanisms; this is 
known as polychemotherapy. Important lessons have been learned from 
combination antimicrobial treatment (Crofton, 1959). However, this 
was not limited to hypothesis, and therefore, some empirical approaches 
were conducted in the therapy of lymphoma, breast cancer, and testic
ular tumors (DeVita et al., 1980; Bonadonna et al., 1976; Bosl et al., 
1986). When it was believed that combination cancer therapy was 
beneficial in tumor suppression, complicated cancer therapy regimens 
were developed, resulting in the development of a new pattern in cancer 
elimination. Furthermore, some other approaches were developed to 
provide more insights and hope in cancer therapy, including various 
dose levels (Hryniuk and Bush, 1984), shorter-interval administrations 
of chemotherapy (Citron et al., 2003; Sternberg et al., 2001), and higher 
concentration levels of chemotherapy (Sternberg et al., 2001). Even in 
the process of polychemotherapy, there were different approaches; one 
of them was the combination of two chemotherapy compounds, and 
another was the combination of plant-derived natural products with 
synthetic drugs in cancer therapy. Both of these approaches have shown 
promising results in cancer therapy. For instance, resveratrol, as a nat
ural product, is capable of suppressing the IL-6/STAT3 axis, which is 
beneficial in impairing M2 polarization of macrophages, enhancing the 
number of M1 polarized macrophages, and enhancing drug sensitivity 
(Cheuk et al., 2022). Furthermore, curcumin disrupts the PI3K/Akt/m
TOR axis to increase the sensitivity of tumor cells to cisplatin chemo
therapy (Kalinina et al., 2022). As a result, the chemotherapy process 
has been slightly improved in terms of tumor suppression. However, this 
is not the end of the story, and a new problem in cancer chemotherapy is 
multidrug resistance (MDR), which is defined as a process in which 
tumor cells obtain the ability to develop resistance to different kinds of 
chemotherapeutic agents that have various structures and mechanisms 
of action (Fojo et al., 1987). The interesting point is that tumor cells can 
not only obtain resistance to different chemotherapy compounds but 
also show such properties before exposure to these agents (Kaye, 1988). 

The mechanisms of chemoresistance are categorized into two groups 
to make it easier to understanding the development of this process. 
Intrinsic and adaptive drug resistance are two major categories of che
moresistance that have been investigated in detail (Chatterjee and 

Bivona, 2019). If resistance is present before chemotherapy exposure, it 
is known as “intrinsic drug resistance,” and it is considered the capacity 
of treatment-naive tumors to survive in spite of exposure to chemo
therapy that can result from genomic mutations or cell-state changes 
(Wu et al., 2008; Bivona et al., 2011; Ng et al., 2012; Konieczkowski 
et al., 2014). However, adaptive drug resistance occurs after the process 
of chemotherapy in which populations and colonies of tumor cells 
obtain genomic mutations or adaptations to the drug, and then some 
changes in growth mechanisms and other related pathways may occur, 
and these alterations lead to acquired drug resistance (Kobayashi et al., 
2005; Yun et al., 2008; Cross et al., 2014; Thress et al., 2015; Paskeh 
et al., 2021). 

Now, this question comes into mind: can specific mechanisms and 
pathways responsible for MDR be targeted to reverse this condition? The 
answer is yes, but MDR is a multifactorial condition, and it has been 
shown that hyperactivation of ABC transporters on the surface of tumor 
cells, epigenetic and genetic changes, apoptosis inhibition, autophagy 
modulation, DNA damage repair, and cancer stem cells are among the 
factors that can play a significant role in the process of MDR (Wu et al., 
2014). When the concept of MDR was introduced, it caused some worry 
among physicians and those who work in the field of cancer therapy and 
overcoming chemoresistance. First of all, due to the presence of MDR, 
the strategy of combination cancer therapy may be compromised, and 
therefore, a new solution should be provided as a preventative measure. 
Moreover, although plant-derived natural compounds can be used along 
with chemotherapy agents, they have poor bioavailability and thera
peutic index (Ashrafizadeh et al., 2020a). Hence, researchers focused on 
using gene therapy approaches to reverse chemotherapy resistance in 
tumor cells. The purpose and final aim of gene therapy are similar to 
those of polychemotherapy, but it is performed in a more specific way so 
that a certain pathway or mechanism that can lead to drug resistance is 
targeted by gene therapy, and then this can enhance the sensitivity of 
tumor cells to chemotherapy (Izquierdo, 2005; Mirzaei et al., 2022; 
Mahabady et al., 2022). With these descriptions, readers may consider 
that the problem of drug resistance has been solved completely. How
ever, when it comes to practical work, these strategies demonstrate 
significant drawbacks that interfere with their therapeutic index. Both 
approaches, including polychemotherapy and gene therapy, suffer from 
a lack of specific delivery due to rapid metabolism of antitumor com
pounds, and their short half-lives, chemoresistance, and effectiveness in 
drug therapy still need to be addressed in cancer patients. Moreover, the 
problem in gene therapy is more tangible since genes can be degraded by 
RNase enzymes and they have an off-targeting feature. Moreover, low 
pH in the tumor microenvironment may negatively affect the structure 
and chemical activity of genetic tools. Therefore, nanostructures have 
been extensively utilized for the delivery of genetic tools to overcome 
the aforementioned problems in gene delivery and provide effective 
cancer therapy (Mirzaei et al., 2021a; Ashrafizadeh et al., 2021a; Chadar 
et al., 2021). According to these discussions, it can be highlighted that 
nanoparticles play a significant role in the process of cancer therapy, and 
one of their important functions is providing targeted delivery of drugs 
and genes in cancer therapy to protect them, increase their bioavail
ability, and internalize them in tumor cells in order to enhance the po
tential of tumor suppression by current therapeutic tools. The next 
sections specifically focus on the role of GNPs in providing cancer 
chemotherapy, their potential in drug delivery, and other benefits such 
as phototherapy in accelerating the process of tumor suppression. 
Table 1 summarizes use of GNPs in cancer therapy. 

4. Nanostructures in cancer chemotherapy: Beyond gold 
nanoparticles 

The field of cancer chemotherapy has evolved due to the introduc
tion of nanostructures for drug delivery of drugs. Before discussing 
function of GNPs in cancer chemotherapy and delivery of anticancer 
agents, it would be beneficial to give an introduction about the role of 
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nanoparticles in drug delivery and cancer chemotherapy, and then, 
potentials and benefits of GNPs are highlighted in the next sections. The 
polymeric nanostructures have always been used in the treatment of 
solid tumors, and they can be loaded with ICG and decitabine (DCT) to 
mediate cancer immunotherapy. They show high and preferential 
accumulation at the tumor site, and they have poor immunogenicity. 
Moreover, such polymeric nanostructures can stimulate pores in the cell 
membrane to enhance Ca2+ levels in the cytoplasm in cancer therapy 
(Zhao et al., 2020). ZnO@CuS nanoparticles are other candidates for use 
in cancer chemotherapy and phototherapy that show deep tumor 
penetration and can suppress cancer-associated fibroblasts in tumor 
microenvironment. Moreover, such nanoparticles enhance the produc
tion of ROS to mediate cell death (Deng et al., 2021). The ability of 
nanostructures in cancer chemotherapy can be improved, when they are 
modified with aptamers for selective and targeted delivery (Li et al., 
2018). Lipid-based nanostructures have been introduced recently as 
novel types for purpose of cancer chemotherapy. In addition to high 
biocompatibility of such nanocarriers, they improve the pharmacoki
netics of drugs and due to the presence of phospholipids and surfactants 
in their composition, it can lead to inhibition of P-glycoprotein, a drug 
efflux pump involved in chemoresistance (Ahmad et al., 2015). 
Furthermore, nanostructures can combine hyperthermia and chemo
therapy in cancer suppression (Ohtake et al., 2017). Two important 
characteristics have made nanostructures promising structures in cancer 
chemotherapy: one of them is high encapsulation efficiency, and the 
other is the ability to control and prolong the release of drugs (Gogoi 
et al., 2014). In order to increase the potential of cancer chemotherapy, 

the blood circulation time of chemotherapy drugs should be improved, 
which can be obtained by nanostructures (Xu et al., 2021a). Impor
tantly, even two different chemotherapy drugs can be loaded on nano
structures in combination cancer therapy (Rui et al., 2017), and all of the 
studies advocate the application of nanoparticles for cancer chemo
therapy (Zhang et al., 2018; Zhao et al., 2022). 

5. Nature-derived compounds for modification of gold 
nanoparticles in cancer therapy 

One of the important advances in the field of cancer therapy is the 
modification, coating, and functionalization of GNPs with compounds 
derived from nature and the environment. There are several underlying 
reasons for using nature-derived compounds for coating GNPs, but it 
appears that improving the biocompatibility of GNPs and simulta
neously, increasing their cytotoxicity against tumor cells are the most 
important reasons. Chitosan (CS) is a natural polysaccharide that can be 
isolated from chitin through deacetylation, and when the derived 
polymer is considered CS, the acetylation degree is less than 50%, and it 
shows solubility in acidic solutions (Akpan et al., 2020). CS has a 
cationic feature, which has resulted in its significant application. 
Furthermore, the mucoadhesive characteristic of CS is vital for the 
purpose of drug delivery (Yu et al., 2019). Both hydrophobic and hy
drophilic drugs can be delivered by CS nanoparticles, and in addition to 
improving the stability of pharmaceutical compounds against enzymatic 
degradation, they can enhance the bioavailability and therapeutic index 
of drugs, and they can enhance the action mechanism of compounds 
(Shariatinia, 2019). In a recent study, GNPs were used to deliver 
tamoxifen in cancer therapy, and they were also modified with 
β-cyclodextrin (β-CD) and hyaluronic acid (HA)-CS. The nanocomposites 
demonstrated a particle size of 82.02 nm and a zeta potential of − 23.6 
mV, and their shapes were spherical, triangle, and irregular. Fluores
cence microscopy demonstrated high internalization of GNPs in breast 
and colorectal tumor cells, and they displayed high cytotoxicity against 
tumor cells (Kahlous et al., 2022). Cervical and breast tumors are 
considered huge threats to the health of females around the world (Torre 
et al., 2015). The genomic mutations that occur in these cancers cause 
abnormal proliferation as well as cell death escape (Galluzzi et al., 
2015). Surgical resection, immunotherapy, chemotherapy, radio
therapy, and hormonal therapies are considered the main tools in the 
treatment of cervical and breast tumors (Nosrati et al., 2022a, 2023; 
Rashidzadeh et al., 2023). However, there are adverse impacts associ
ated with the aforementioned therapies, and due to genomic mutations 
in tumor cells, they can induce apoptosis resistance (Martinez-Torres 
et al., 2015; Taheriazam et al., 2023). CS/GNPs have been considered as 
interesting approaches in the treatment of cervical and breast tumors, 
and these nanoparticles are able to increase the generation of ROS to 
stimulate cell death in tumors (Martínez-Torres et al., 2018). This 
experiment adds to our understanding of cancer therapy: CS/GNPs have 
the ability to induce cell death, and when used for drug delivery, they 
can enhance the potential for tumor suppression. 

Two important aspects regarding GNPs should be considered: A) if 
GNPs can be synthesized biologically, and B) if they can be modified 
with compounds from nature, these approaches are important in 
improving their characteristics, including preventing aggregation and 
others (Kalaivani et al., 2020). Biomimetic is defined as a field in which 
nanostructures are fabricated in a biological way (Wang and Wang, 
2014), and different kinds of biological sources such as plant extracts, 
microorganisms, enzymes, starch, and biopolymers can be employed in 
this case. In recent decades, the synthesis and fabrication of nano
structures using marine sources have been of interest (Velusamy et al., 
2016). However, marine resources have been mainly used for other 
applications, and their use for the synthesis of nanostructures is still at 
the beginning stage. Marine flora, fauna, and bioactive compounds can 
be utilized for nanostructure synthesis. Besides, biocompatible and 
biodegradable resources, including seashells, pearls, and fish bones, 

Table 1 
The application of GNPs for purpose of cancer therapy.  

Nanoparticle Cancer 
type 

Remark Ref. 

Gold 
Nanoparticles 
and Graphene 
Oxide Flakes 

– Improving the phagocytosis 
of tumor cells 

Al-Omar et al. 
(2021) 

Gold 
Nanoparticles- 
MWCNT Based 
Aptasensor 

Prostate 
cancer 

Precise devices for diagnosis 
of tumor 

Alnaimi et al. 
(2022) 

Antibody- 
conjugated 
silica-coated 
gold 
nanoparticles 

Cervical 
cancer 

Apoptosis induction and 
targeted cancer therapy due 
to modification with 
aptamer 

Yu et al. 
(2022) 

Gold 
nanoparticles 

– Targeted delivery of 
epigallocatechin gallate for 
apoptosis induction 

Cunha et al. 
(2022) 

Gold 
nanoparticles 

Ovarian 
cancer 

Gold nanostructures target 
IGFBP2/mTOR/PTEN axis 
for suppressing cancer 
proliferation 

Hossen et al. 
(2022) 

Gold 
nanoparticles 

Bladder 
cancer 

Gold nanoparticles 
stimulate apoptosis and 
promote ROS generation 

Daei et al. 
(2022) 

pH-sensitive gold 
nanoparticles 

– Responsiveness to pH and 
mediating photothermal 
therapy 

Park et al. 
(2019) 

Genistein-loaded 
gold 
nanoparticles 

Prostate 
cancer 

High stability and reducing 
viability of tumor cells 

Vodnik et al. 
(2021) 

AS1411 aptamer- 
conjugated gold 
nanoparticles 

Breast 
cancer 

Exerting radio-sensitive 
activity 

Mehrnia et al. 
(2021) 

Gold 
nanoparticles 

– Suppressing cancer- 
associated fibroblasts and 
preventing the crosstalk of 
cancer and 
microenvironmental cells 

Zhang et al. 
(2021) 

PEGylated gold 
nanoparticles- 
ribonuclease 

Colorectal 
cancer 

Stimulation of oxidative 
damage and apoptosis 

Akbarzadeh 
Khiavi et al. 
(2020)  
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have demonstrated great promise in nanoparticle synthesis (Jeeva
nandam et al., 2018). On the other hand, when modification of metal 
nanostructures with biopolymers is performed, their agglomeration can 
be avoided (Kalaivani et al., 2020). GNPs were prepared from squilla 
shell waste in a recent experiment, and their surface was then modified 
with CS. The synthesized nanostructures demonstrated a spherical shape 
with particle sizes in the range of 80–82 nm. Moreover, they were used 
against breast tumor cells and reduced their survival rate based on the 
results of MTT assay (Kalaivani et al., 2020). 

GPNs can be extensively used for the purpose of phototherapy, which 
will be discussed in detail in Section 5.4. However, it is worth 
mentioning that biopolymer-coated GPNs can be used for purposes of 
chemotherapy and phototherapy, and one of the reasons for using CS is 
to increase the safety profile of nanocarriers. A recent study has pre
pared folic acid-functionalized CS-coated GPNs for delivery of docetaxel 
and paclitaxel in cervical cancer therapy. It appears that the combina
tion of phototherapy and drug delivery is of importance in suppressing 
tumor progression, but the important point is the function of CS, which 
not only improves features of GPNs but also can provide an anchor for 
surface modification with folic acid (Lee et al., 2022). Furthermore, the 
modification of gold nanorods with CS is advantageous for cancer 
chemotherapy or phototherapy (Duan et al., 2014). However, it should 
be noted that internalization of nanoparticles in cells depends on their 

shape (among other factors such as particle size and charge) (Makvandi 
et al., 2021), and future studies will compare which kinds of GPNs 
(spherical or rod shapes) are more efficacious in cancer therapy and 
drug delivery. Paclitaxel (PTX) is a common antitumor compound that 
has been utilized in the treatment of breast and ovarian tumors, but it 
suffers from low solubility and a poor therapeutic index (Lee et al., 2008; 
Tao et al., 2012). Different kinds of nanocarriers have been used for PTX 
delivery, and CS-based nanostructures are among them (Ashrafizadeh 
et al., 2020b). GNPs are promising carriers for targeted delivery of PTX 
in cancer therapy, but their stability is not satisfactory and can be 
improved by CS oligosaccharide. Then, CS-modified GNPs can be used 
for PTX delivery with a spherical shape and a particle size of 61.86 nm. 
These nanocarriers increased ROS generation and mediated the loss of 
mitochondrial potential to induce apoptosis in breast tumor cells (Fig. 1) 
(Manivasagan et al., 2016). 

Xanthan gum (XG) is a natural exopolysaccharide gum that can be 
derived from the aerobic fermentation of glucose by Xanthomonas 
campestris (Garcıa-Ochoa et al., 2000). High availability, safety, 
affordability, and biodegradability are some of the features of XG 
(Rosalam and England, 2006). XG can be employed for the synthesis of 
GPNs using the heating method (Pooja et al., 2014). However, a recent 
experiment has synthesized GPNs using the microwave method, and 
they have been capped with XG. There are COO-groups on the surface of 

Fig. 1. The synthesis of gold nanoparticles, loading paclitaxel and subsequent mechanism of action in tumor cells to induce apoptosis via increasing ROS generation 
and impairing function of mitochondria. Reprinted with permission from Elsevier (Manivasagan et al., 2016). 
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XG-coated GNPs that can be used for conjugation with doxorubicin 
through electrostatic interaction. In acidic pH, doxorubicin was released 
from nanocarriers, but only partially in physiological pH. The nano
structures were internalized in tumor cells via endocytosis, and it was 
shown that they have higher cytotoxicity compared to free doxorubicin 
(4.6-fold higher) (Fig. 2) (Alle et al., 2020). According to these discus
sions, the compounds obtained from nature are promising candidates for 
surface modification of GNPs to improve their characteristics in cancer 
therapy (Fig. 3). 

6. Gold nanoparticles and chemotherapeutic delivery 

6.1. Co-delivery with antitumor agents 

The drug resistance challenge has forced scientists to find new so
lutions. Combination cancer therapy appears to be a promising approach 
among various approaches for improving chemotherapy efficacy and 
overall survival of cancer patients. In this framework, antitumor agents, 
most of which are phytochemicals, are co-administered with chemo
therapeutic agents to promote the sensitivity of tumor cells. This co- 
application exerts a synergistic impact and induces cell death and cell 
cycle arrest to prevent the proliferation of tumor cells. Although this 
strategy demonstrated promising results in cancer therapy, this life- 
threatening disease still has no absolute cure. Hence, more 

Fig. 2. A) The synthesis mechanism of gold nanoparticles, their endocytosis in tumor cells and their mechanism of action, B) the viability of tumor cells. Reprinted 
with permission from Elsevier (Alle et al., 2020). 
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advancement should be made in this case. It has been shown that the co- 
delivery of antitumor compounds and chemotherapeutic agents is ad
vantageous in reversing drug resistance and suppressing cancer cell 
progression. Therefore, this section is allocated to understanding the 
potential of GNPs as nanocarriers for co-delivery and preventing tumor 
progression. A recent experiment has prepared GNPs for the co-delivery 
of 5-fluorodeoxyuridine (FUdR) and doxorubicin in breast cancer ther
apy. The surface of GNPs was decorated by hybrid DNA strands and then 
conjugated to FUdR using DNA solid-phase synthesis. At the next step, 
doxorubicin molecules were loaded into duplex regions. For selective 
targeting of breast cancer cells overexpressing HER2, affibody molecules 
were conjugated to DNA strands on the surface of GNPs. The finished 
nanoarchitecture is spherical in shape and has a high drug loading ca
pacity. The in vitro experiment revealed the potential of GNPs for 
selectively targeting HER2-overexpressing breast cancer cells and sup
pressing their progression. Furthermore, there was a synergistic impact 
between FUdR and doxorubicin, improving the fight against breast 
tumor cells. This combination and the use of GNPs for co-delivery can 
effectively induce apoptosis in breast cancer cells (Zhang et al., 2020a). 
In addition to breast cancer therapy, GNPs have been used in the 
co-delivery of antitumor agents in pancreatic tumor treatment. In this 
case, PEGylated GNPs were prepared, and then doxorubicin and varli
tinib were loaded. Such combination therapy and delivery of GNPs can 
elevate antitumor activity against pancreatic cancer cells while having 
high biocompatibility and being safe for healthy pancreatic cells. 

Another study investigated the role of GNPs in co-delivery of 
cisplatin, doxorubicin, and capecitabine in hepatocellular carcinoma 
treatment. For the stabilization of GNPs, a monolayer of L-aspartate was 
utilized. The aforementioned antitumor drugs were conjugated to hy
drophilic structures in GNPs. These antitumor drug-loaded GNPs are 
able to significantly diminish the progression and viability of tumor 
cells, demonstrating their capacity to provide chemosensitivity 

(Tomuleasa et al., 2012). To date, a few experiments have exploited 
GNPs for co-delivery of chemotherapeutic agents in tumor therapy. 
However, these studies obviously demonstrate the ability of GNPs to 
target tumor cells and promote the intracellular accumulation of anti
tumor compounds. There is still a long way to go in revealing the po
tential of GNPs in co-delivery and cancer treatment. For instance, 
doxorubicin and cisplatin, discussed above, use various pathways and 
mechanisms to exert their antitumor activity, such as apoptosis, auto
phagy, and DNA damage, among others (Mirzaei et al., 2021b, 2021c; 
Ashrafizadeh et al., 2020c, 2021b). The studies have ignored the mo
lecular pathways and mechanisms that are affected by this co-delivery. 
Therefore, future studies should pay more attention to the underlying 
mechanisms responsible for drug resistance (Najafi et al., 2020; Ashra
fizaveh et al., 2021) and their regulation of antitumor drug-loaded 
GNPs. Furthermore, surface modification of GNPs was overlooked, and 
there were a few efforts to improve the stability and biocompatibility of 
these nanoparticles. 

One of the important problems with using GNPs in the field of drug 
delivery is their toxicity (Connor et al., 2005b; Goodman et al., 2004). 
Therefore, if the surfaces of GNPs are coated with biocompatible poly
mers, it is possible to improve their safety profile. On the other hand, the 
benefit of co-delivery is reducing the concentration of drugs, which 
decreases adverse impacts, avoids chemotherapy resistance, and im
proves the therapeutic index. Therefore, an experiment has developed 
PEGylated hybrid gold/nanogels for the co-delivery of doxorubicin and 
6-mercaptopurine in cancer therapy. Because of the ERP effect and the 
presence of glutathione (GSH), these hybrid nanocarriers can increase 
accumulation at tumor tissue, resulting in cargo release in cancer cells. 
Furthermore, hybrid gold/nanogels are able to release drugs in response 
to pH due to the presence of disulfide bonds, and according to their high 
cytotoxicity, they can significantly decrease tumor growth (Fig. 4) 
(Ghorbani and Hamishehkar, 2018). 

Fig. 3. Nature-modified GNPs in cancer therapy. The purpose of modifying GNPs with polymers and materials derived from nature, such as chitosan, is to improve 
their characteristics, and one of the most important reasons is improving biocompatibility. 
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Notably, since doxorubicin is widely used for the purpose of cancer 
therapy, there is a high chance for resistance development, which is why 
studies have focused on its delivery by nanoparticles and in cancer 
therapy (Mahabady et al., 2022; Hashemi et al., 2022b). Importantly, 

various kinds of nanoparticles, such as hyaluronic acid-based nano
architectures, have been shown to be advantageous in increasing 
doxorubicin’s cytotoxicity and preventing drug resistance (Mirzaei 
et al., 2021a). In breast tumor cells, there is a high expression level of 

Fig. 4. A) The development of redox-responsive gold nanoparticles, B) The exact mechanism of synthesis. Reprinted with permission from Elsevier (Ghorbani and 
Hamishehkar, 2018). 

Fig. 5. The application of GNPs for purpose of co-delivery in cancer therapy. Combination cancer therapy has emerged as a promising approach in improving tumor 
cell elimination, and GNPs can encapsulate drugs in their core or on their surface. 
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HER2, and if GNPs are decorated with ligands targeting HER2, the 
ability of nanostructures to suppress tumors is significantly enhanced. 
For this purpose, GNPs have been modified with affibody-DNA hybrid 
strands, and then 5-fluorodeoxyuridine was conjugated to these strands 
via DNA solid-phase synthesis. Furthermore, doxorubicin was embedded 
into duplex regions of DNA strands on the surface of GNPs. The GNPs 
were stable with a spherical shape, and they showed high tumor sup
pressor activity against HER2-overexpressing breast tumor cells, and 
due to co-delivery, synergistic cancer suppression was provided (Zhang 
et al., 2020a). The essential part of co-delivery is that this strategy can 
also be used for the co-delivery of two antitumor agents that have been 
derived from nature. In previous studies, doxorubicin and other 
chemotherapy compounds have been utilized in cancer therapy, but 
since plant-derived natural products suffer from poor bioavailability, 
using GNPs can be beneficial in improving their therapeutic index in 
cancer therapy. Sulforaphane (SNF) suppresses the Akt/mTOR axis to 
reduce the growth and invasion of bladder tumor cells (Xie et al., 2022); 
furthermore, it reduces MMP-9 levels to decrease the metastasis of 
gastric cancer (Li et al., 2022). Curcumin, on the other hand, is a 
naturally occurring compound with a high potential for reducing tumor 
cell sensitivity to chemotherapy (Abadi et al., 2022; Ashrafizadeh et al., 
2020d; Wei et al., 2022). PEGylated iron oxide-gold core shell nano
structures were prepared for the co-delivery of curcumin and SFN. The 
prepared nanostructures demonstrated an 80.57 nm particle size and a 
zeta potential of − 15.4 mV. The loading efficiency for curcumin and SFN 
was 17.32% and 16.74%, respectively. Furthermore, the encapsulation 
efficiencies for curcumin and SFN in nanostructures were 83.72% and 
81.2%, respectively. The cytotoxicity of these antitumor drugs increases 
after delivery by nanostructures, and they are able to suppress metas
tasis and stimulate apoptosis and necrosis (Fig. 5) (Ashrafizadeh et al., 
2022). 

6.2. Combined gene therapy and chemotherapy 

In Section 3, the challenges in the field of chemotherapy were dis
cussed, and it was noted that the drawbacks and limitations of 

chemotherapy, such as resistance, can also be solved with the help of 
gene therapy. More importantly, the application of gene therapy has its 
own problems, such as a lack of appropriate internalization in tumor 
cells and targeted delivery, that can be solved by nanostructures. The 
use of GNPs has been shown to be promising in terms of providing 
synergistic gene- and chemotherapy. The dendrimer-entrapped GNPs 
have been shown to be beneficial for the co-delivery of miR-21 inhibitors 
and gemcitabine in pancreatic tumor suppression. The resulting nano
carriers can be internalized in tumor cells, and interestingly, their 
cellular uptake can be improved by ultrasound-targeted microbubble 
destruction (UTMD) to elevate cell permeability. Furthermore, this co- 
delivery led to a reduction in the IC50 value of gemcitabine, and in 
vivo, it caused a decrease in tumor growth and volume and enhanced 
blood perfusion in xenograft models (Lin et al., 2018). Since miR-21 
functions as an oncogene in cancer chemotherapy, its delivery by 
GNPs has been tried in various studies (Ren et al., 2016). Upregulation 
of miR-21–5p leads to down-regulation of PTEN and TIMP3 and induces 
doxorubicin resistance in gastric cancer (Chen et al., 2018a). Silencing 
miR-21 inhibits prostate tumor cell growth and increases doxorubicin 
sensitivity (Zhao et al., 2021). Therefore, miR-21 inhibitor delivery by 
nanostructures and their combination with doxorubicin improve the 
potential of cancer chemotherapy (Raniolo et al., 2021). In 
NIR-responsive hollow GNPs, both doxorubicin and miR-21 inhibitor 
have been loaded, and at the first step, the release of miR-21 inhibitor 
occurs to enhance drug sensitivity, and then NIR leads to the collapse of 
GNPs to release doxorubicin in effective cancer chemotherapy. This 
co-delivery exerts synergistic impact and promotes antitumor capacity 
by 50-fold. Moreover, upon intravenous administration of cargo-loaded 
hollow GNPs, they accumulated at the tumor site and reduced tumor 
progression (Fig. 6) (Ren et al., 2016). Therefore, co-delivery of miRNAs 
and chemotherapy agents by GNPs is beneficial in cancer therapy, and 
one of the limitations is the lack of significant focus on the molecular 
pathways that are affected after this co-delivery in cancer 
chemotherapy. 

Although GNPs have shown good efficacy in miRNA delivery, most 
emphasis in experiments is on the co-delivery of siRNA and 

Fig. 6. A) The synthesis of nanoparticles and their mechanism of action upon entrance into tumor cells, B) Antitumor activity in vivo in animal model, C) Tumor 
volume and weight upon administration of nanoparticles, D) Histopathological profile of tissues. Reprinted with permission from Elsevier (Ren et al., 2016). 
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chemotherapy agents in cancer therapy. STAT3 pathway has been 
considered oncogenic in various human cancers due to its function in 
modulating proliferation, metastasis, and therapy response as well as its 
potential in interaction with other pathways (Garg et al., 2021; Ashra
fizadeh et al., 2020e). Targeting STAT3 with nanoparticles has been 
shown to be beneficial in cancer therapy. On the other hand, STAT3 
plays a significant role in melanoma progression, and its inhibition by 
luteolin can enhance melanoma suppression (Li et al., 2022). Further
more, STAT3 increases glycolysis in melanoma via upregulation of 
PKM2 (Zhang et al., 2022). An experiment has focused on the 
co-delivery of STAT3-siRNA and imatinib in melanoma therapy. This 
co-delivery by GNPs decreased protein levels of STAT3 to impair 
tumorigenesis in melanoma, and based on in vivo results, it significantly 
reduced tumor weight and volume (Labala et al., 2017). However, focus 
has been placed on the co-delivery of doxorubicin and siRNA by GNPs in 
cancer therapy. The reason is the high popularity of doxorubicin in 
cancer chemotherapy, and its action mechanism is based on topoisom
erase II suppression to reduce DNA replication. However, due to the 
presence of doxorubicin resistance, interest has been directed towards 
using nanoparticles for the delivery of doxorubicin in cancer suppres
sion. The octreotide-conjugated gold nanorods have been applied for the 
co-delivery of doxorubicin and siRNA in effective cancer therapy, and in 
addition to demonstrating uniform size distribution, these nano
structures also demonstrate pH-sensitive release of cargo. The conju
gation with octreotide enhances the internalization of gold nanorods in 
tumor cells, and they suppress proliferation (Xiao et al., 2012). 

Doxorubicin is a popular agent in pancreatic cancer therapy, but 
since resistance has been developed, there have been attempts to 

increase drug sensitivity. Autophagy inhibition by danthron impairs 
pancreatic cancer progression and elevates doxorubicin sensitivity 
(Chen et al., 2019). Moreover, deguelin has been associated with auto
phagy inhibition and enhanced doxorubicin sensitivity (Xu et al., 2017). 
One of the promising strategies is the combination of siRNA and doxo
rubicin and delivery by GNPs in pancreatic cancer therapy. Gold 
nanorods have been utilized in the co-delivery of doxorubicin and siRNA 
in pancreatic cancer chemotherapy, and exposure to 665 nm light leads 
to reducing tumor growth by 90%. Moreover, co-delivery by gold 
nanorods leads to down-regulation of K-Ras to induce cycle arrest in 
pancreatic tumor cells and by combining gene-/chemo-therapy, it de
creases tumor progression (Yin et al., 2015). These studies highlight the 
fact that when it comes to understanding the biological mechanisms 
involved in increasing the progression of tumor cells and decreasing the 
potential of chemotherapy, siRNA and co-delivery with antitumor 
compounds can provide promising results in cancer therapy, such as 
what has been observed in the delivery of EGFP-siRNA and erB2-siRNA 
with doxorubicin using GNPs in cancer therapy (Kotcherlakota et al., 
2017; Kumar et al., 2017). Fig. 7 provides a summary of gene and drug 
co-delivery by GNPs in cancer therapy. 

6.3. Combined phototherapy and chemotherapy 

Phototherapy is the use of light as a tool to halt tumor cell progres
sion. Phototherapy is categorized into two groups, including photo
thermal therapy (PTT) and photodynamic therapy (PDT), that have their 
own distinct features (Zhen et al., 2019; Thangudu and Su, 2021; Jan 
et al., 2022). Phototherapy, as a minimally invasive therapeutic 

Fig. 7. The ability of GNPs in co-delivery of drugs and genes in cancer therapy. The genes can be degraded by enzymes during bloodstream circulation, but by 
loading in GNPs, they can be protected, and they regulate gene expression levels with high efficiency. 
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approach, focuses on the use of photo-responsive factors to apply irra
diation for the elimination of tumor cells with minimal side effects on 
normal and healthy tissues (Luo et al., 2016). The functions of PDT and 
PTT in triggering cancer cell death are a little different. In PTT, a 
photo-absorbing compound is utilized that, under NIR irradiation, 
causes heat generation and induces tumor ablation (Jiang et al., 2018). 
In PDT, the used photosensitizers generate reactive oxygen species 
(ROS) under a specific wavelength that can be utilized for oxidizing 
biomolecules and suppressing tumor progression (Xu et al., 2017; Lucky 
et al., 2015; Shen et al., 2016). The current section aims to accelerate 
cancer chemotherapy by using GNP-mediated PDT and PTT (Fig. 8). A 
question may come into mind: if the problem related to lack of specific 
delivery and low accumulation of tumor cells in cancer tissues can be 
solved using nanostructures, what is the necessity of using PDT or PTT 
along with nanoparticle-mediated chemotherapy? The answer is similar 
to the goal of co-delivery of drugs and genes in cancer therapy in that a 
combination of chemotherapy and phototherapy can improve the po
tential of cancer therapy. For instance, paclitaxel is one of the chemo
therapeutic agents used in cancer therapy. However, increasing 
evidence has revealed that dysregulation of molecular mechanisms can 
lead to the development of paclitaxel resistance in tumor cells (Wang 
et al., 2022a; Ren et al., 2022; Wu et al., 2022). For increasing the po
tential of paclitaxel in cancer therapy, paclitaxel-loaded GNPs were first 
prepared, and then they were modified with a polydopamine layer to 
increase their stability. The resulting nanocarriers demonstrated high 

biocompatibility and cellular uptake, and they were able to induce 
apoptosis and decrease the expression level of P-gp. Moreover, exposure 
to NIR irradiation led to the release of paclitaxel, and by providing PTT, 
it caused mitochondrial damage, oxidative stress, DNA injury, and 
upregulation of pro-apoptotic proteins including caspase-3, p53, and 
Bax, accelerating tumor suppression (Zhan et al., 2022). It appears that 
when modification of GNPs is performed, their selectivity towards tumor 
cells is enhanced, which is beneficial for the purposes of PTT and 
chemotherapy. The CD44-targeted GNPs have been prepared for the 
delivery of doxorubicin in breast cancer therapy and provide PTT with a 
particle size of 71.34 nm. The process of loading doxorubicin in GNPs 
was performed via electrostatic interaction with an entrapment effi
ciency of 75%, and after exposure to 808 nm irradiation, it caused PTT 
that exerted synergistic impact with chemotherapy in ROS production, 
apoptosis induction, and providing tumor ablation (Kalyane et al., 
2022). Surprisingly, the findings are not limited to in vitro experiments; 
in vivo studies have revealed that using GNPs for combination photo- 
and chemotherapy is important in cancer therapy (Yang et al., 2022). 

However, the use of nanoparticles is more than the simple delivery of 
chemotherapy agents in cancer therapy, and nanostructures can be used 
for suppressing the progression of drug-resistant tumor cells (Choe et al., 
2021). Yolk-shell-structured nanoparticles possess a unique 
yolk-void-shell configuration and display important characteristics such 
as low density, a large surface area, good loading ability, and hollow 
outer shells (Purbia and Paria, 2015). In a recent effort, 

Fig. 8. The use of GNPs for purpose of PDT and PTT in cancer therapy. Phototherapy has emerged as a new kind of therapy for cancer, and due to the potential of 
GNPs in absorbing light, they can induce PTT and PDT to promote the potential of chemotherapy in tumor suppression. 
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yolk-shell-structured silica nanocapsules encapsulating aggregated gold 
nanospheres (aAuYSs) have been utilized in suppressing the progression 
of drug-resistant ovarian tumor cells. In the silica interior of aAuYSs, 
GNPs were loaded, and then they showed absorbance of 808 nm laser 
irradiation for PTT. The induced cell death in doxorubicin-resistant 
ovarian tumor cells, as well as further investigation, revealed that 
these nanostructures, in combination with doxorubicin, can have a 
synergistic effect in PTT and chemotherapy of ovarian tumors (Choe 
et al., 2021). 

More investigation has revealed that when drug nanocrystals are 
decorated with GNPs, they can mediate PTT, which is important for 
overcoming chemoresistance (Wang et al., 2022b). The field of combi
nation therapy has been improved by drug nanocrystals, which have a 
high surface area that is beneficial for improving the bioavailability of 
drugs. Moreover, drug nanocrystals are able to trigger the EPR effect, 
providing passive targeting to cancer sites (Zhou et al., 2016; Zhan et al., 
2017). Drug nanocrystals are also beneficial in reversing P-gp-mediated 
chemoresistance and preventing the efflux of drugs (Da Silva et al., 
2017; Wang et al., 2011). In a recent effort, the surface of drug nano
crystals has been modified with GNPs, and in addition to the delivery of 
camptothecin, they stimulated apoptosis and reduced P-gp expression 
that is due to the combination of PTT and chemotherapy (Wang et al., 
2022b). 

According to these studies, it is recommended to use GNPs for the 
purpose of photo- or chemotherapy to impair the progression of tumor 
cells and sensitize them to anticancer drugs (Faid et al., 2022; C et al., 
2021; He et al., 2022; Huang et al., 2021; Mapanao et al., 2021; Liu 
et al., 2020; Hou et al., 2019; Yang et al., 2017; Zhu et al., 2018a). Since 
GNPs possess good PTT efficacy and previous discussions revealed that 
they are capable of providing targeted delivery of anticancer drugs, 
future studies may focus on the co-delivery of drugs and genes as well as 
PTT in cancer therapy, which is known as “photo-/chemo-/gene-therapy 
of cancer.” Moreover, major emphasis is on the role of GNPs in medi
ating PTT, but there are a few studies showing the role of GNPs in 
providing PDT in cancer suppression. In an experiment, novel kinds of 
gold nanoclusters have been developed based on tumor-targeted 
Ce6-doxorubicin-GNCs-MMP2 polypeptide nanoparticles (CDGM NPs) 
for providing chemo- and phototherapy. The click chemistry was used 
for the synthesis of nanostructures, and both Ce6 and doxorubicin were 
loaded for purposes of PDT and chemotherapy, respectively. Due to the 
EPR effect, nanostructures demonstrate high accumulation at the tumor 
site, and modification with polypeptides has also increased their selec
tivity towards cancer cells. The nanostructures have also been modified 
with PEG to increase their biocompatibility and blood circulation time. 
The nanoparticles were pH-sensitive, and exposure to low pH levels can 
result in cargo release due to the presence of acid-sensitive attachment 
between doxorubicin and the cis-aconitic anhydride (CA) that is the 
cis-aconityl linkage. In order to reduce tumorigenesis, these nano
clusters induce both chemotherapy and PDT (Xia et al., 2018). More 
importantly, GNPs can be used for the purposes of PTT, PDT, and 
chemotherapy in cancer suppression (Xu et al., 2018). When irradiation 
with a wavelength of 630 nm occurs, it leads to ROS generation that can 
suppress tumorigenesis and promote the potential of chemotherapy in 
cancer therapy (Bhattacharya et al., 2022). 

6.4. Stimuli-responsive devices 

6.4.1. pH-responsive 
The discussion in previous sections revealed that GNPs are promising 

candidates for cancer chemotherapy by mediating targeted delivery, 
providing a platform for co-delivery, and triggering PTT and PDT. The 
use of smart nanocarriers in tumor suppression is one of the most recent 
advances in cancer therapy. The smart nanostructures can be responsive 
to endogenous or exogenous stimuli, and one of them is pH. The tumor 
microenvironment has an acidic pH that is due to glycolysis and the high 
proliferation of cancer cells, while the pH in normal and healthy tissues 

is near 7.4. Therefore, if linkages and bonds in GNPs can be degraded at 
a pH level near the tumor microenvironment, they can release cargo in 
response to pH, thereby providing targeted cancer therapy. In an 
experiment, GNPs were fabricated that were able to selectively target 
angiogenic endothelial cells through the identification of αvβ3 and 
folate for increasing cellular uptake in tumor cells. The conjugation of 
doxorubicin on the surface of GNPs was conducted by a hydrazone bond 
that is pH-sensitive. In response to acidic pH, these GNPs release 
doxorubicin, and upon exposure to NIR irradiation, it causes PTT that is 
beneficial for apoptosis induction, angiogenesis inhibition, and prolif
eration suppression in melanoma (Wang et al., 2019). It appears that the 
ability of nanostructures to respond to specific features of tumor 
microenvironment is critical for achieving desirable drug delivery 
(Wang et al., 2017; Luo et al., 2017; Bigham et al., 2022). When nano
structures respond to pH-level of tumor microenvironment, the process 
of drug delivery can be improved (Prescott et al., 2000). There are a 
number of acid-responsive linkages, including hydrozone bond (Praba
haran et al., 2009; Yuan et al., 2010), benzoic imine bond (Deng et al., 
2015; Zeng et al., 2017), and cis-aconityl linkage (Srinophakun and 
Boonmee, 2011; Zhu et al., 2010) that render the characteristic of 
pH-responsiveness to nanocarriers. It has been reported that conjugation 
of doxorubicin to surface of dendrimers can lead to pH-sensitive features 
due to the presence of cis-aconityl linkage (Kratz et al., 2002; Di Stefano 
et al., 2004). In an experiment, PAMAM dendrimers were functionalized 
with folic acid, and then doxorubicin was conjugated to the dendrimers 
via cis-aconityl bond. At the next step, the prepared doxorubicin den
drimers were entrapped by GNPs. The Au core size was 2.8 nm, and they 
showed high stability. Due to presence of cis-aconityl linkage, the 
nanostructures released doxorubicin in a pH-sensitive manner, which 
led to site-specific drug release and effective cancer therapy (Fig. 9) (Zhu 
et al., 2018b). 

In the previous section, it was discussed that GNPs can be used for 
PTT and PDT. Now, there has been effort put into developing GNPs that 
demonstrate PTT impact and pH-responsive function. Doxorubicin has 
been conjugated to gold nanorods via a hydrazone bond that is pH- 
sensitive and can release the drug in the tumor microenvironment. 
The doxorubicin-loaded gold nanorods internalize in HepG2 cells via 
endocytosis, and after exposure to NIR irradiation (808 nm wavelength), 
they cause PTT along with chemotherapy in cancer suppression (Chen 
et al., 2018b). Metal-organic frameworks (MOFs) are considered porous 
materials that can be utilized for the encapsulation of drugs, fluorescent 
molecules, and nanostructures (Chalati et al., 2011; Della Rocca and Lin, 
2010, 2010deKrafft et al., 2009; Eddaoudi et al., 2002; Govindaraju 
et al., 2018; Luo et al., 2018). In an experiment, doxorubicin-loaded, 
ZIF-8-encapsulated GNPs were prepared as pH-sensitive nanocarriers 
for cancer therapy. Due to loading into ZIF-8, doxorubicin and GNPs did 
not show release in neutral medium and prevented toxicity in normal 
cells. Importantly, exposure of ZIF-8 to low pH levels causes the release 
of GNPs and DOX that cause PDT and chemotherapy, respectively 
(Zhang et al., 2020c). Another critical aspect is the creation of hybrid 
nanocarriers with properties of two nanostructures. In a recent 
approach, a micelle-GNP hybrid nanosystem was developed for doxo
rubicin delivery with an encapsulation efficiency of 41–61% that caused 
drug release at acidic pH levels, and both in vitro and in vivo experi
ments highlighted the function of this hybrid nanosystem in cancer 
therapy (Lin et al., 2017). Therefore, pH-sensitive GNPs are highly 
recommended for drug delivery and cancer suppression. 

6.4.2. Redox-responsive 
Overall, nanobiotechnology is a growing field that aims at improving 

drug delivery, gene therapy, and tumor imaging (Liu et al., 2007; Dizaj 
et al., 2014). When nanoparticles are applied for the purpose of drug 
delivery, they are beneficial in protecting the entrapped drug and can 
result in prolonged drug release with low adverse impacts (Kumar
aswamy et al., 2014; Kissling et al., 2016; Nosrati et al., 2022b). 
Recently, precision medicine has been a hot topic, and it aims to develop 
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nanobiomaterials for therapeutic and diagnostic purposes (Lu et al., 
2018). Therefore, exploitation of unique tumor microenvironment fea
tures can help in providing effective stimulus-responsive nanocarriers. 
In addition to pH, the redox imbalance present in tumor microenvi
ronment can be utilized for the development of stimulus-responsive 

nanocarriers, and it has been reported that DM1-doped porous gold 
nanoshells can be used for redox-sensitive delivery of antitumor drugs in 
breast cancer therapy. The resulting nanostructures had a particle size of 
78.6 nm, and they showed good colloidal stability with pH-sensitive 
drug release. The decoration of gold nanoshells was performed with 

Fig. 9. A-C) The synthesis mechanism of nanoparticles and their mechanism of action in response to light for purpose of cancer therapy. Reprinted with permission 
from ACS (Zhu et al., 2018b). 

Fig. 10. A) Synthesis nanoparticles, B) the viability of cancer cells after exposure to nanostructures. Reprinted with permission from Elsevier (Guo et al., 2021).  
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mPEG and trastuzumab; the latter is for providing selective delivery by 
binding to the HER2 receptor. The nanocarriers were able to stimulate 
apoptotic cell death due to tubulin stimulation, caspase-3 activation, 
and HSP70 down-regulation. Moreover, nanostructures demonstrated 
inhibition of M2 macrophages and suppressed the metastasis of breast 
tumor cells (Xu et al., 2021b). In another effort, in-situ polymerized 
polyplatinum (IV)-coated gold nanorods have been designed that release 
cargo in response to redox state, and they demonstrated improved 
cancer site accumulation after systemic administration, leading to 
effective cancer chemotherapy and phototherapy (Fig. 10) (Guo et al., 
2021). 

6.4.3. Multifunctional 
The light-responsive GNPs were discussed in the section on photo

therapy (section 5.4). One of the advances in the development of smart 
nanostructures is the combination of some stimuli to increase the po
tential of cancer therapy. In one approach, two endogenous stimuli can 
be combined for the development of smart GNPs. Redox- and pH- 
sensitive GNPs have been developed as smart nanoplatforms for the 
delivery of doxorubicin, methotrexate, and 6-mercaptopurine with 
entrapment efficiencies of 37%, 12%, and 49%, respectively, and this 
loading was performed by ionic interaction. Furthermore, the cytotox
icity results demonstrated the high anticancer activity of these nano
structures (Ghorbani and Hamishehkar, 2017). In another approach, pH 
and light as internal and external stimuli, respectively, can be utilized 
for the purpose of cancer therapy. The pH and light sensitive GNPs were 
conjugated with thiolated poly (ethylene glycol)-biotin to increase 
sensitivity to tumor cells by upregulating the biotin receptor. Then, 
doxorubicin was conjugated to DNA decorated on the surface of GNPs; 
this bond is pH-sensitive (pH 5), and in response to irradiation at 808 
nm, it can release cargo. The nanomaterials demonstrated high cellular 
uptake and prevented the efflux of drugs in drug-resistant tumor cells 
(Zhang et al., 2016). Fig. 11 shows stimuli-responsive GNPs in cancer 
therapy. 

7. Conclusion and remarks 

The current review focused on the role of GNPs in cancer chemo
therapy. The reason for highlighting this aspect is because therapy 
failure has been a significant issue in the treatment of cancer patients, 
and physicians have advocated for the development of innovative stra
tegies to overcome chemoresistance. The existence of MDT has led to the 
development of chemoresistance to several antitumor compounds; 
consequently, the introduction of new anticancer medications will not 
be of much assistance, since cancer cells can acquire resistance again. 
This paper focuses on the use of GNPs for the delivery of chemotherapy 
drugs in cancer therapy. One of the most significant advantages of GNPs 
is their ability to provide a platform for drug co-delivery as well as drug 
and gene co-delivery. At the first approach, two types of antitumor 
compounds with different modes of action are loaded into GNPs, and 
then these nanoparticles then facilitate their co-delivery to inhibit the 
growth of tumor cells. Next, a molecular pathway that is responsible for 
drug resistance development, such as STAT3, is selected, and then its 
suppression by gene delivery can increase sensitivity to chemotherapy. 
However, because GNPs have poor biocompatibility, there has been an 
effort to improve their safety by using nature-derived materials, and 
some agents, such as chitosan, have been used for this purpose, which 
not only increase biocompatibility but also enhance cytotoxicity to
wards tumor cells. Moreover, when GNPs are modified with compounds 
such as hyaluronic acid or folate, their selectivity towards tumor cells 
increases, hence enhancing the cytotoxicity of these nanostructures. 
Since GNPs are able to absorb the irradiation, they can be used for PTT 
and PDT; in PTT, they generate heat by increasing the drug sensitivity of 
tumor cells, and in PDT, they increase ROS generation by mediating cell 
death. Moreover, smart GNPs, including light-, redox-, pH-, and multi- 
responsive nanostructures, have been developed for the purpose of 
cancer therapy and targeted delivery of chemotherapy agents that 
improve accumulation at the tumor site. Since these discussions approve 
the functionality of GNPs in cancer therapy, future studies can focus on 
clinical translation and improving the survival rate of cancer patients. 

The cancer therapy field requires combination of different disciplines 
to obtain an outcome that is satisfactory for cancer patients. The current 

Fig. 11. Development of smart GNPs for cancer therapy. The multifunctional GNPs can be responsive to pH, redox and light to mediate site-specific delivery of drugs 
in cancer chemotherapy. 
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manuscript did not focus on a certain type of cancer, but it proposed 
some methods and strategies that can be used for all cancers, regardless 
of their kinds. One of the main reasons for choosing GNPs for cancer 
therapy is that such nanostructures have intrinsic cytotoxicity against 
tumor cells. Hence, when they are applied along with drugs in cancer 
therapy, it can lead to a synergistic impact. However, conventional GNPs 
are no longer a hot spot for cancer therapy since multifunctional, smart 
and targeted kinds of GNPs have been introduced and designed. Each 
cancer type may demonstrate upregulation of some of the specific re
ceptors on its surface, such as folate receptor, CD44 and others. There
fore, conventional GNPs should be modified with ligands targeting such 
receptors in cancer therapy to enhance internalization. This approach is 
highly suggested during cancer chemotherapy, as chemotherapy drugs 
have side effects on normal cells and tissues, and when their targeted 
delivery is provided, their side effects reduce. However, the clinical 
application of GNPs still requires much investigation. This is due to some 
toxicological studies showing that GNPs may display toxicity on normal 
cells, and therefore, modification with natural and biopolymers to 
improve their biocompatibility is recommended. 

After the introduction of combination cancer therapy, there was a 
hope that therapy failure in cancer patients would be solved. Although 
combination cancer therapy brought much hope to the treatment of 
patients, it was found that there is still a need for progress in this therapy 
and that its benefits for the treatment of cancer patients can be 
improved. The concept of nanomedicine is that it can improve the po
tential of both monotherapy and poly-chemotherapy in cancer sup
pression. Therefore, even if combination cancer therapy has promising 
results, its efficacy can be improved by loading it on nanoplatforms such 
as GNPs. In addition, GNPs can mediate the co-delivery of drugs or drug/ 
gene combinations in cancer therapy. Another important aspect of GNPs 
is that, due to their ability to absorb light, they can mediate PDT and PTT 
in combination cancer therapy. All of these discussions are in line with 
the benefits of using GNPs in cancer therapy, and again, their clinical 
application still requires improving their biocompatibility. 
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