Environmental Research 228 (2023) 115912

Contents lists available at ScienceDirect

Environmental Research

o %

ELSEVIER journal homepage: www.elsevier.com/locate/envres

Review article ' :.)
Eco-friendly chitosan-based nanostructures in diabetes mellitus therapy:

Promising bioplatforms with versatile therapeutic perspectives
Afshin Taheriazam *", Maliheh Entezari ™, Zeinab Mohammadi Firouz ",

Shima Hajimazdarany *“, Mohammad Hossein Heydargoy ¢, Amir Hossein Amin Moghadassi b
Ali moghadaci’, Amin sadrani ®, Motahhar Motahhary h Abdorrahman Harif Nashtifani Y
Amirhossein Zabolian ¢, Teimour Tabari’, Mehrdad Hashemi > jlobm

., Rasoul Raesi s
Mengyuan Jiang ", Xuebin Zhang ™, Shokooh Salimimoghadam ", Yavuz Nuri Ertas *"
Dongdong Sun ™

@ Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

Y Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
¢ Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

4 Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
€ Department of Microbiology, Shahr-e Ghods Branch, Islamic Azad University, Tehran, Iran

f Aja University of Medical Sciences, Tehran, Iran

8 Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

1 General Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

! Department of Health Care Management, Zahedan University of Medical Sciences, Zahedan, Iran

I Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

X Mashhad University of Medical Sciences, Mashhad, Iran

! Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran

™ Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China

" Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

© Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey

P ERNAM—Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey

ARTICLE INFO ABSTRACT

Keywords: Nature-derived polymers, or biopolymers, are among the most employed materials for the development of
Diabetes mellitus nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such
Chitosan

as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery sys-
tems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-
specific delivery of cargo. Owing to the high biocompatibility of CS-based nanocarriers, they can be used in
the future in clinical trials. On the other hand, diabetes mellitus (DM) is a chronic disease that can develop due to
a lack of insulin secretion or insulin sensitivity. Recently, CS-based nanocarriers have been extensively applied
for DM therapy. Oral delivery of insulin is the most common use of CS nanoparticles in DM therapy, and they
improve the pharmacological bioavailability of insulin. Moreover, CS-based nanostructures with mucoadhesive
features can improve oral bioavailability of insulin. CS-based hydrogels have been developed for the sustained
release of drugs and the treatment of DM complications such as wound healing. Furthermore, CS-based nano-
particles can mediate delivery of phytochemicals and other therapeutic agents in DM therapy, and they are
promising compounds for the treatment of DM complications, including nephropathy, neuropathy, and
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cardiovascular diseases, among others. The surface modification of nanostructures with CS can improve their
properties in terms of drug delivery and release, biocompatibility, and others, causing high attention to these

nanocarriers in DM therapy.

1. Introduction

Diabetes mellitus (DM) has had significant effects and consequences
on the lives of people around the world, urging scientists to improve
their knowledge of DM pathogenesis and develop new therapies for it
(Brito-Casillas et al., 2016). Based on the in silico and in vitro studies,
the pathogenesis of DM is considered to be multifactorial, and different
interactions are implicated in its progression and pathogenesis (Graham
and Schuurman, 2015). The animal model has improved our under-
standing of DM pathogenesis (Gale, 2005; Roep and Atkinson, 2004),
but there is still a chimera about animal replacement (Russell and Burch,
1959). The studies on human, in vitro, and animal models have been
interested in understanding the underlying mechanisms involved in DM
pathogenesis (Roep and Atkinson, 2004). DM is defined as a metabolic
disease in which hyperglycemia occurs and can be caused by insulin
deficiency in a direct or indirect way (Bielka et al., 2022). Type I DM
(TIDM) and type II DM (TIIDM) are two main kinds of DM in humans. As
an autoimmune disease, antibodies are secreted in TIDM patients that
are against pancreatic p-cells to mediate pathogenesis of TIDM, which
mediates insulin deficiency (Bluestone et al., 2010). On the other hand,
insulin resistance can lead to development of TIIDM. Then, enhanced
demand for insulin in peripheral tissue occurs, impairing and disrupting
the function of beta cells (Udayappan et al., 2014). The management of
DM should be performed immediately, and a lack of proper management
leads to long-term complications affecting the lives of DM patients.
When DM is not controlled, it leads to the development of complications
such as retinopathy, chronic kidney disease, neuropathy, cardiomyop-
athy, and an increase in mortality (Nathan et al., 2013; Stratton et al.,
2000; Orchard et al., 2015). In 2019, it was mentioned that the number
of people with DM is increasing, and by 2045, the number of DM pa-
tients will increase to 700 million from 463 million (Saeedi et al., 2019).
The most prevalent type of DM is TIIDM, which can result from oxidative
stress and inflammation (Ma et al., 2018). When metabolic disorders
occur, oxidative stress is observed, which leads to impaired insulin ac-
tivity (Dominique, 2002; Fukunaka and Fujitani, 2018) via multiple
molecular pathways (Alberici et al., 2011) and the generation of reactive
oxygen species (ROS) (Rosen et al., 2001). The production of ROS can
result in stresses and damages in f cells that disrupt the release of insulin
from cells (Evans, 2003). Moreover, ROS overgeneration can result in
activation and upregulation of NF-xB (nuclear factor-xB) and PKC
(protein kinase C). These alterations result in insulin-related molecular
pathways for mediating insulin resistance development (Scivittaro et al.,
2000; Kaneto et al., 2002; Goldin et al., 2006). Another risk factor for
development of DM is inflammation (Xie and Du, 2011). Different mo-
lecular pathways and kinases are affected by inflammation to induce
insulin resistance in DM. The adipocytes and immunocytes are able to
secrete pro-inflammatory factors such as IL-6 and TNF-a in DM patho-
genesis (Crook, 2004; Monami et al., 2014; Mahmoud and Al-Ozairi,
2013; Winer et al., 2016; Gratas-Delamarche et al., 2014). These cyto-
kines and inflammatory factors lead to upregulation of NF-kB in insulin
resistance development (Crook, 2004; Mahmoud and Al-Ozairi, 2013;
Winer et al., 2016; Gratas-Delamarche et al., 2014; Donath, 2013).
Moreover, when there are high levels of IL-6 and TNF-q, it can cause
dysfunction and impairment in f§ cell function (Donath, 2013). The
dysregulation of AMPK signaling has also been implicated in the
development of diabetic complications and insulin resistance (Entezari
et al., 2022).

Since diabetic complications can decrease life quality of patients,
significant effort in understanding their pathogenesis and providing
treatment approaches have been provided. The diabetic nephropathy

can be alleviated by the function of glabridin that reduces ferroptosis
through increasing SOD and GSH levels, and can suppress VEGF/Akt/
ERK axis (Tan et al., 2022). The tubular injury in diabetic nephropathy
can be reduced by the function of PACS-2 through increasing mitopha-
gosome by binding to BECN1 and also, preventing mitochondrial
recruitment of DRP1 (Li et al., 2022a). The podocyte injury is observed
during diabetic nephropathy and it has been reported that METTL3 in-
creases apoptosis and inflammation for this purpose (Jiang et al., 2022).
Furthermore, when DM occurs in mice, cardiac pyroptosis is a problem
that injury in mitochondria and upregulation of cGAS-STING can result
in this condition (Yan et al., 2022). The left ventricular remodeling is
observed in diabetic cardiomyopathy that down-regulation of ADAM17
alleviates this condition (Xue et al., 2022). The expression level of SIRT3
increases by FGF21 to promote mitochondrial integrity and function in
amelioration of diabetic cardiomyopathy (Jin et al., 2022). TRPV1
expression enhances by capsaicin to increase eNOS levels and reducing
ROS generation in reducing cardiac injury in DM (Wang et al., 2022a).
Furthermore, ferroptosis and inflammation are reduced by 6-gingerol in
amelioration of diabetic cardiomyopathy (Wu et al., 2022).
Nanoparticles have obtained much attention in recent years in the
treatment of DM and its complications. A recent study has developed
thermosensitive hydrogels containing Prussian blue nanoparticles and
found that their mechanism of action is unique: by reducing the gen-
eration of ROS and improving mitochondrial function, they are able to
ameliorate wound healing in DM (Xu et al., 2022). The stimulation of the
proteasome pathway can lead to DM development. When gold nano-
particles are used for the treatment of DM, they can lead to a reduction
in oxidative stress, inflammation, and glucose levels via inhibiting the
function of ubiquitin-proteasome pathway (Al-Shwaheen et al., 2022).
Moreover, since copper nanoparticles have antioxidant activity, they
may be beneficial in the treatment of DM via decreasing oxidative
damage, one of the factors involved in DM pathogenesis (Ameena et al.,
2022). The eco-friendly synthesis of nanoparticles has been beneficial in
recent years in the treatment of DM. Silver nanostructures can be syn-
thesized from Azadirachta indica kernel aqueous extract, and then they
can exert anti-diabetic and anti-inflammatory activities (Lan Chi et al.,
2022). Combination therapy has also been beneficial in the treatment of
DM. It has been shown that a combination of rutin and selenium
nanostructures can result in reduced expression of JAK2/STAT3 and
induction of Nrf2 axis in alleviation of diabetic nephropathy (Zaghloul
et al., 2022). Moreover, when hydrogels are developed for the purpose
of DM therapy, they can contain both therapeutic drugs and nano-
structures for the amelioration of DM and its complications (Entezari
et al., 2022). The green/bio-synthesized nanostructures have obtained
high potential in DM therapy. The silver nanocarriers can be bio-
synthesized from Cyanobacteria Synechocystis sp with 10-35 nm
diameter and spherical shape that possess high wound healing ability in
diabetic model and can increase VEGF expression as angiogenic factor
(Younis et al., 2022). The topical gels can be embedded in solid lipid
nanostructures and are utilized for purpose of fluoxetine repurposing to
increase wound healing feature (Fatima et al., 2022). The gold nano-
structures can also be synthesized from Eryngium thyrsoideum Boiss
Extract that have high anti-inflammatory function through reducing
TNF-a and IL-6 levels for DM therapy (Mahmoudi et al., 2022). Ac-
cording to these studies, nanoparticles have obtained much attention in
recent years in the treatment of DM, and their conjugation with other
compounds or their employment for drug delivery can be beneficial for
DM therapy (Table 1) (Gadoa et al., 2022; Lawal et al., 2022; Ul Haq
etal., 2022; Ahmed et al., 2022; Venkatesan et al., 2022a). In the current
review, a focus is placed on the application of chitosan-based
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Table 1
The application of (nano)platforms in DM therapy.

(Nano)platform Remark Ref

Silver nanostructures Green synthesis from the
Extremophile Plant
Aeonium haworthii
Antioxidant, antimicrobial

and antidiabetic activities

Essghaier
et al. (2022)

Gold nanostructures Green synthesis from leaf Ayyoub et al.
extract of Dittrichia viscosa ~ (2022)
Decreasing hyperglycemia
Reducing hepatic
gluconeogenesis
Ag and NiO nanostructures Biosynthesis from VPLE Gao et al.
20-35 nm particle size (2020)
Hepatoprotective activity
in DM
Novel glucose-responsive Decreasing blood glucose Ma et al.
nanoparticles based on p- and alleviation of diabetic (2022)
hydroxyphenethyl anisate and 3- nephropathy
acrylamidophenylboronic acid Degradation and slow
release of HPA
Improving renal function
Decreasing inflammation
Composite hydrogel containing High biocompatibility Zhu et al.
resveratrol-laden nanoparticles Decreasing macrophage (2022)
and platelet-derived extracellular iNOS expression
vesicles Reducing inflammation
Zinc oxide nanostructures Promoting levels of CD4, Elassy et al.
CD8, and GLUT-4 and (2020)
reducing inflammation
Chitosan/alginate nanostructures Improving wound closure Sheir et al.

rate (2021)
Bio-generation from Mahmoudi
Eryngium thyrsoideum et al. (2021)
Boiss Extract and
improving liver function in
DM

Antioxidant and anti-
apoptotic function in
testicular tissue of diabetic

Silver nanostructures

Cerium oxide nanostructures Solgi et al.

(2021)

rats

Detection of glucose in
diabetic tears

Biosynthesis from leaves of
Ficus palmata
Anti-inflammatory and
anti-diabetic functions
Delivery of fenofibrate in
alleviation of diabetic
retinopathy

Preventing retinal
dysfunction

Decreasing retinal vascular
leakage

Suppressing retinal
leukostasis

Reducing levels of VEGF
and ICAM-1

Cui et al.
(2022)
Sati et al.
(2020)

Gold nanostructures and MXene
composite
Metal nanoparticles

Qiu et al.
(2019)

PLGA nanostructures

nanoparticles in the treatment of DM. Fig. 1 schematically displays DM
(see Fig. 2).

2. Chitosan: from environment, chemistry to biological
applications

The nano-scale delivery systems opened a new gate in the treatment
of diseases, but conventional drug delivery systems still have some
drawbacks that should be addressed, such as not being able to deliver
the drug to the right place, having low absorption, which can lead to
poor bioavailability, and being hard to dissolve (Ertas et al., 2021).
When accumulation of drugs in non-specific tissues occurs, it can lead to
adverse impacts. The new and smart delivery systems have been
developed to reverse the side effects and drawbacks of conventional
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delivery systems and improve therapeutic and clinical results in patients
(Jan et al., 2022). Now, this question may be asked: Why is drug dis-
covery not preferred to nano-scale delivery systems? Overall, the pro-
cess of drug discovery and introducing new drugs with potential
therapeutic effects is time-consuming and expensive, while nanoparticle
synthesis and development are simple and affordable. Nanotechnology
has opened its way in the treatment of various diseases, and one of the
most important applications of nanoparticles is in targeted delivery of
drugs and other cargo in cancer therapy (Ashrafizadeh et al., 2022a,
2022b, 2023a). Moreover, biocompatible nanostructures such as exo-
somes have been introduced recently as promising factors in the treat-
ment of DM (Ashrafizadeh et al., 2022c¢). Chitosan (CS) is a chitin
derivative obtained by removing the acetate portion of chitin
(Mohammed et al., 2017). In fact, deacetylation of chitin in presence of
heat results in production of CS. CS is defined as a naturally occurring
polysaccharide, and it has important features such as a positive charge, a
highly basic nature, a mucoadhesive feature, high biocompatibility, and
has been approved by the Food and Drug Administration (FDA) for the
purpose of tissue engineering and drug delivery. The chitin that is found
in nature and the environment is attached to proteins and minerals, and
therefore, acidification and alkalinization of chitin lead to generation of
CS. Then, when purification of chitin occurs, it is transformed into CS via
N-deacetylation method. The modification of this process can lead to
some changes in final product in terms of molecular weight and pKa
(Sorlier et al., 2001) that can be monitored through regulating deace-
tylation degree, chitin source, and reaction extent. The non-toxicity and
high biocompatibility of CS have been completely interesting for re-
searchers, and structurally, CS has been comprised of randomly
distributed p-(1, 4)-linked d-glucosamine (deacetylated) and N-ace-
tyl-d-glucosamine (acetylated) units (Rizeq et al., 2019). Chitin is pre-
sent in cell walls of fungi, and it can also be found in fish and
invertebrates. Due to the presence of hydroxyl and amine groups in the
structure of CS, this polymer can be easily modified, and this chemical
modification can improve its characteristics. In addition to biocompat-
ibility, one of the most important features of CS is its biodegradability,
which means that after degradation by enzymes, it is changed and
transformed into oligosaccharides that are again non-toxic and
biocompatible, confirming the application of CS in clinics. In biomedi-
cine, CS-based nanostructures have been beneficial for antimicrobial,
anticancer, drug delivery and tissue engineering applications (Mohebbi
et al., 2019). Moreover, CS-based nanostructures have attracted much
attention in the fields of ophthalmology, dentistry, bio-imaging, bio--
sensing, and diagnosis (Conti et al., 2000).

Notably, chemical modification of CS is advantageous in improving
its physical and chemical properties, and moreover, it can expand the
application range of CS derivatives (Wang et al., 2020a). The purpose of
chemical modification of CS is to greatly improve its properties in the
treatment of diseases, including biocompatibility, bioactivity, and
biodegradability, while their antibacterial, anticancer, antiviral, and
other activities are sustained (Christou et al., 2019; Iftime et al., 2019;
Kaczmarek et al., 2019; Kritchenkov et al., 2019; Lin et al., 2018; Pavoni
et al., 2019). Currently, CS derivatives have been fabricated as nano-
particles, hydrogels, microspheres, and micelles. CS-based derivatives
are beneficial for purposes of drug delivery and as adjuvants in the
development of vaccines (Caracciolo et al., 2019; Cheah et al., 2019;
Islam et al., 2019; Leso et al., 2019; Nguyen et al., 2019; Sah et al., 2019;
Zhang et al., 2019). The chemistry of CS modification is important.
Briefly, there are C3-OH, C6-OH, C2-NH2, and acetyl amino and
glycoside bonds on the surface of CS that are known as functional groups
(Razmi et al., 2019). Among these functional groups, the acetyl amino
and glycosidic bonds are stable, and their fracture is not easy. C3-OH is
considered a secondary hydroxyl bond that cannot undergo rotation
freely, and due to its steric hindrance, it does not undergo reaction
easily. Both C6-OH and C2-NH2 can undergo chemical modification via
different types of molecular design. The chemical modification of CS
significantly improves its applications (Braz et al., 2020; Medeiros
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Fig. 1. A schematic representation of DM.

Borsagli et al., 2018; Wang et al., 2016). Recently, studies have focused
on the biomedical applications of CS and its derivatives, their biological
significance, and their importance in the treatment of diseases (Abd
El-Hack et al., 2020; Zhao et al., 2018).

CS-based nanostructures can be used for gene delivery. Due to the
positive charge of CS, it can form stable complexes with genes that have
a negative charge, and after specific delivery, much improvement in the
treatment of human diseases, especially cancer, can be provided (Ash-
rafizadeh et al., 2021). Moreover, drug resistance is one of the chal-
lenging conditions in treatment of cancer. This condition comes from
lack of specific delivery of drugs into tumor cells, while their encapsu-
lation by CS-based nanostructures improves their internalization in
cancer cells and prevents the emergence of drug resistance (Ashrafiza-
deh et al., 2020, 2023b). The function of CS-based nanoparticles is more
than their simple application in cancer therapy, and it has been shown
that application of these nanostructures leads to the development of
biocompatible scaffolds for purpose of wound healing (Abadehie et al.,
2021). The biomedical application of CS-based nanoparticles is too vast.
The development of smart CS-based nanoparticles leads to their exerting
anti-oxidant and anti-inflammatory functions in reducing levels of cy-
tokines and pro-inflammatory factors that are beneficial in treatment of
apical periodontitis (Hussein and Kishen, 2022). The CS-based nano-
architectures can be used for targeted delivery of isolongifolene that
mediates sustained release of drugs in cancer therapy (Manimaran et al.,
2022). However, one of the most important applications of CS is in the
antimicrobial field, and it has been shown that coating polymeric silver
and gold nanostructures with CS leads to high antibacterial activity
(Hugq et al., 2022). When selenium nanostructures are coated with CS,
their inhibitory impact on PRRSV replication is enhanced, and by
increasing ROS generation, they induce JNK pathway to mediate
apoptosis (Shao et al., 2022). Octominin, as an antimicrobial peptide,
can be loaded into CS-based nanoparticles, and such drug-loaded
nanostructures are beneficial in exerting antibacterial and antifungal
activities (Fig. 1) (Jayathilaka et al., 2022). The next sections focus on
the role of CS-based nanoparticles in treatment of DM.

3. Biomedical application of CS-based nanoplatforms: A
summary

The CS-based nanoplatforms are extensively utilized in treatment of
various diseases. Before discussing the potential of these nanoparticles
in DM therapy, it is better to provide a summary of their use in treatment
of diseases. The pharmaceutical industry has been evolved by CS-based
nanostructures and their most application is development of safe and
biodegradable nanocarriers with various biomedical applications from
antimicrobial to cancer therapy and development of vaccines (Khalaf
et al., 2023). The natural products can be delivered by CS-based nano-
structures in treatment of human diseases. Curcumin is a bioactive
compound of Curcuma longa and one of its problems is low bioavail-
ability that foxtail millet prolamin/caseinate/CS hydrochloride com-
posite nanostructures improve its stability and retention (Chen et al.,
2023). The alginate/CS nanostructures can deliver quercetin increasing
its antibacterial activity with high antioxidant activity (Nalini et al.,
2022). The CS nanostructures have high entrapment efficiency for
quercetin up to 83.65% and their antibacterial activity is high (Zhou
et al.,, 2022a). Because of their remarkable antibacterial activity,
quercetin-loaded CS nanostructures have been developed for regulating
bacterial adhesion to urethral catheter (Messias de Souza et al., 2022).
The antibacterial compounds such as e-poly-lysine-epigallocatechin
gallate can be loaded in sodium alginate/CS nanostructures in
improving their activity (Li et al.,, 2022b). Furthermore, CS-based
nanoplatforms are promising factors for development of vaccines and
improving function of immune system (Gao et al., 2022). The thermo-
sensitive nanoarchitectures can be fabricated from CS to promote de-
livery of doxorubicin in cancer chemotherapy and by simultaneous
delivery of indocyanine green (ICG), they induce phototherapy in
increasing tumor suppression (Zhang et al., 2022a). One of the problems
in cancer therapy is lack of specificity of anti-tumor compounds that
CS-based nanoparticles can mediate prolonged release of drugs in tumor
suppression (Alhodieb et al., 2022). The CS-hybrid nanostructures can
be functionalized with cinnamaldehyde to deliver doxorubicin in trig-
gering apoptosis, increasing ROS production, promoting caspase
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expression and mediating mitochondrial dysfunction (Zhou et al.,
2022b). For treatment of hepatocellular carcinoma, silica nano-
structures have been functionalized with chitosan and cancer cells
membrane and although CS-based nanostructures have not been used,
this study demonstrates that even functionalization of nanoparticles
with CS is beneficial in improving their anti-cancer potential, while
minimizing toxicity on normal cells (Espinoza et al., 2023). When Wistar
rats are exposed to carbon tetrachloride, nephrotoxicity is mediated that
CS nanostructures alleviate this condition (Nomier et al., 2022).
CS-based nanoparticles have shown high stability in simulated digestion
condition (Li et al., 2022¢) and they can be used for delivery of genetic
materials such as miRNA (Sun et al., 2022).

4. Chitosan-based nanostructures and insulin delivery

The protein/polymer complexes are used for protein delivery, since
they can protect against degradation (Pagels and R.K. Prud homme,
2015) and increase penetration through biological barriers (Sharma
et al., 2015). Moreover, such nanostructures can guide proteins to spe-
cific targets (Amidi et al., 2010). However, using globular proteins for
production of nanostructures does not lead to generation of stable
nanostructures due to salt shielding of electrostatic interaction between
protein and polymer (Zhu et al., 2014). The stability of protein-polymer
complexes can be significantly improved by adding hydrophobic in-
teractions and hydrogen bonding (Zhu et al., 2014). In order to conju-
gate hydrophobic molecules to polymers, random conjugation is
performed (Guo et al., 2008). In an experiment, CS nanostructures have
been prepared for insulin delivery, and their modification with fatty
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acids and quaternary ammonium has been conducted. The nano-
structures demonstrated a particle size of 280 nm, and they were pro-
duced as a result of electrostatic and hydrophobic interactions among CS
and insulin. The entrapment efficiency was more than 98%, and fatty
acid modification promoted hydrophobicity of nanostructures. When
the hydrophobicity of nanostructures increases, their cellular uptake in
hepatocytes enhances, and their antidiabetic activity is suggested to be
higher. Moreover, CS nanoparticles significantly improved bioavail-
ability of insulin by 233% and 311%, upon modification with lauric acid
and oleic acid, respectively (Li et al., 2018). Oral delivery of insulin is
considered a promising way to treat DM due to the ease of administra-
tion. Moreover, insulin oral delivery can provide physiological release of
this agent, improve homeostasis of glucose in body and reduce the
problems related to frequent administration and injection of insulin
(Zambanini et al., 1999). However, poor absorption of insulin impairs its
bioavailability, which results from its high molecular weight, the pres-
ence of an acidic environment, and the chance of degradation by en-
zymes in stomach (Shan et al., 2015; Li et al., 2017). Therefore, oral
delivery of insulin, especially by CS-based nanoparticles, has been fol-
lowed. A recent experiment has developed mucoadhesive nano-
structures based on mucin-CS complex for oral delivery of insulin, and
they had particle sizes of 479.6 and 504.1 nm with zeta potentials of
22.1-31.2 mV. The entrapment efficiency for insulin is different; it can
be high (up to 92.5%), and it mediates controlled release for 8 h. In vivo
experiments also revealed that oral administration of insulin via such
nanostructures promotes its ability to reduce glucose levels when
compared to insulin alone (Mumuni et al., 2020). CS is one of the most
biocompatible and common polymers in drug delivery. It appears that
modification of CS can increase its potential in delivery, such as thio-
lated CS that has thiol groups that can be immobilized on amine groups,
and such modification also improves mucoadhesive features. When it
adheres to mucus, it increases the time of insulin release in gut (Brav-
0-Osuna et al., 2007). A recent experiment has highlighted that thiolated
CS nanostructures have a capacity for insulin delivery with a particle
size of 220 + 4 nm and mediate prolonged release of insulin at a pH level
of 5.3. According to in vivo results, the viability of cells did not change
upon exposure to these nanostructures, and they can attach to the tip of
the microvilli. The levels of insulin and glucose changed upon admin-
istration of CS nanostructures, and they improved biodistribution of
insulin, which is important in DM therapy (Sudhakar et al., 2020).
Insulin is a large protein with such a hydrophilic nature that it is not
possible to directly load it into CS-lecithin nanostructures. The lip-
ophilicity of insulin can be changed upon chemical alteration or physical
conjugation to phospholipids, and such a strategy can improve perme-
ability through mucus and enhance stability against enzymatic degra-
dation (Peng et al., 2010). Since chemical modification of large proteins
can change their structure, it is recommended to use
insulin-phospholipid complexes. In an experiment, lecithin/CS nano-
structures were developed that can self-assemble into nanocarriers with
a size of 180 nm and an entrapment efficiency of 94%. They have a
loading efficiency of 4.5% for insulin, and they have a hollow core with
different bilayers. The administration of insulin-loaded nanostructures
into an animal model led to improvements in glycemic profile and
enhanced pharmacological availability of insulin up to 6.01% (Liu et al.,
2016). One of the complications of DM is delayed blood flow, particu-
larly in venules. When the blood circulation reduces, the presence of
granular or massive red blood cells is obvious in the microcirculation,
and sometimes it can cause interruption of blood flow. Simultaneously,
white blood cells can adhere to the walls of blood vessels. Moreover, the
expression level of VCAM-1 increases on the surface of microvascular
endothelial cells (Xu et al., 2018a). When leukocytes are stimulated and
adhere, the generation of free radicals is enhanced, which can result in
damage to local vascular endothelial cells and mediate damage and
injury to  tissues (Taniyama  and Griendling, 2003).
Chitosan-microcapsulated insulin is able to ameliorate mesenteric
microcirculation dysfunction in diabetic rats, and for this purpose, it

Table 2
The use of CS-based nanoparticles for insulin delivery.
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Nanovehicle

Remark

Ref

Poly (lactic-co-glycolic acid)
and chitosan composite
nanocarriers

Insulin-chitosan complex

Insulin-loaded trimethyl
chitosan nanoparticles

Gold nanoparticles onto
chitosan functionalized
PLGA nanoparticles

PLGA nanoparticles coated
with 5 p-cholanic acid
conjugated glycol chitosan

Dual chitosan/albumin-coated
alginate/dextran sulfate
nanoparticles

Chitosan-modified porous
silicon microparticles

Chitosan nanoparticles

Chitosan-coated solid lipid
nanoparticles

Boronic Acid-Conjugated
Chitosan Nanoparticles

Polymeric nanoparticles based
on carboxymethyl chitosan
in combination with painless
microneedle therapy
systems

Insulin-loaded chitosan-
alginate nanoparticles

Alginate Calcium Microbeads
Containing Chitosan
Nanoparticles

Carboxymethyl-
B-cyclodextrin-grafted
chitosan nanoparticles

Using electrostatic self-
assembly for preparation of
nanostructures

Good hypoglycemic feature in
vivo

Oral delivery of insulin
Nanolayer encapsulation of
CS-insulin complex with
entrapment efficiency of 90%
Increased solubility
Reducing blood glucose levels
Upregulation of IGF1 and
IGF2 in the hippocampus of
diabetic rats

Particle size of 138 & 23, 16
+ 2.2, and 50 £ 9.3 nm
High insulin retention
Decreasing blood glucose
levels

Long-term release, increasing
blood circulation time and
reducing glucose levels in
blood

Preventing 70% of insulin
release in stomach

High permeability of insulin
across cells

Using clathrin-mediated
endocytosis

Elevating the permeability of
insulin across intestinal cell
layers

Particle size less than 45 nm,
narrow size distribution and
high encapsulation efficiency
up to 90% pH-sensitive
release of insulin

Promoting oral absorption of
insulin

Providing controlled release
of insulin

Increasing transdermal
delivery of insulin

Decreasing urea, uric acid and
creatinine levels, and
promoting antioxidant
activity

Reducing blood glucose levels
in a time interval of 96 h

Improving oral delivery of
insulin and increasing ability
in reducing blood glucose
levels

Xu et al. (2017)

Song et al.
(2014)

Kalantarian
et al. (2019)

Asal et al.
(2022)

Wang et al.
(2021a)

Lopes et al.
(2016)

Shrestha et al.
(2014)

He et al. (2017)

Fonte et al.
(2011)
Siddiqui et al.
(2016)

Zhang et al.
(2020)

Heidarisasan
et al. (2018)

Li et al. (2021a)

Song et al.
(2018)

downregulates the expression levels of COX-2 and VCAM-1 (Xu et al.,
2018a).

Arabic gum is one of the biocompatible and biodegradable polymers,
which can be used for oral and topical delivery as a suspending and
emulsifying agent (Bhardwaj et al., 2000). Moreover, it can be used as a
bioadhesive compound (Bhardwaj et al., 2000). The ionic gelation
method was utilized for the preparation of nanostructures from CS and
Arabic gum to mediate delivery of insulin. Cargo release occurred at an
acidic pH, and due to enhanced solubility of CS at such a pH level and
the high swelling of Arabic gum at pH levels greater than 6.5, the release
of insulin at a pH level of 6.5 was reduced. Therefore, they are promising
nanoparticles for insulin delivery (Avadi et al., 2010). Moreover, algi-
nate-CS-PEGylated nanostructures release insulin in response to
glucose levels for DM therapy (Najafikhah et al., 2018). Therefore,
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Fig. 3. The use of CS-based nanoparticles for insulin delivery.

accumulating data shows that CS-based nanostructures can provide in-
sulin delivery that may pave the way for future applications in DM
therapy (Table 2 and Fig. 3) (Shaaban et al., 2022; Ghavimishamekh
et al., 2019; Kalantarian et al., 2018; Tsai et al., 2019; Du et al., 2023).

5. Chitosan-based hydrogel in diabetes mellitus therapy

Hydrogels are networks of hydrophilic polymers that can hold a lot of
water and can swell and shrink. Due to their porosity and low toxicity,
hydrogels can be used to make drug delivery systems that are biocom-
patible and allow for controlled drug release. Hydrogels have obtained
much attention in biomedicine, and the highest amount of hydrogel is
produced in the USA (Narayanaswamy and Torchilin, 2019). One of the
complications of DM is chronic wounds, which are clinically important
and decrease the quality of life of patients. Chronic wounds in DM can
lead to repeated amputations of peripheral limbs, and such wounds
either display resistance to clinically employed drugs or the healing
process is slow (Zhou et al., 2011). The aim of wound healing as a
natural process is to recover the integrity of skin through proliferation
and regeneration of skin tissue. In wound healing, a number of processes
are involved that may overlap, including hemostasis, inflammation,
angiogenesis, fibroblast proliferation, and tissue remodeling (Ayello and
Cuddigan, 2004). Different cells and matrices work jointly during

wound healing to increase and restore the integrity of skin (Eming et al.,
2014). An experiment has developed CS-PEG hydrogels for prolonged
release of silver nanostructures, and compared to bare CS-PEG hydro-
gels, the nanoparticle-loaded hydrogels display higher porosity,
swelling degree, and WVTR. Moreover, silver nanoparticle-loaded CS
hydrogels have superior antioxidant and antimicrobial activities, and
they accelerate process of wound healing. The silver nanostructures are
released from hydrogel in a time interval of seven days, which is
important for wound healing (Masood et al., 2019). On the other hand,
exosomes are small vesicular bodies that can be originated from many
cells, and they are considered natural and endogenous nanostructures
with a size of 30-150 nm. Exosomes facilitate process of cell-cell
communication that is important for tissue repair and regeneration,
disease therapy, and others (Kourembanas, 2015; Rani and Ritter, 2016;
Tkach and Théry, 2016). Exosomes are intracellular platforms that can
mediate transfer of lipids, proteins, RNAs, and other bioactive molecules
(Raposo and Stoorvogel, 2013). The exosome-derived mesenchymal
stem cells have been shown to accelerate process of wound healing and
skin regeneration. Exosomes can increase angiogenesis, growth, migra-
tion, and re-epithelization in improving wound healing. Therefore,
exosomes can be considered as promising alternatives to stem cells for
disease therapy (Kourembanas, 2015; Zhang et al., 2015; Li et al., 2016;
Phinney and Pittenger, 2017). The exosomes isolated from
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Fig. 4. The application of CS-based hydrogels in DM therapy.

mesenchymal stem cells have a particle size of 127 nm, and on the other
hand, CS/silk hydrogel shows appropriate swelling and moisture
retention ability. Loading exosomes in hydrogels is promising in
improving ability in wound healing. The application of exosomes or
hydrogels leads to re-epithelialization and collagen production, and it
accelerates wound healing process (Shi et al., 2017).

The compounds and drugs in traditional Chinese medicine have been
suggested to have immunomodulatory functions (Wang et al., 2021a;
Casey et al., 2015; Zhang and Wei, 2020). Puerarin (PUE) is a natural
compound that can be found in the root of the kudzu vine, and it has
important actions, including cardioprotective, neuroprotective, and
glucose-lowering effects (Chen et al., 2018a, 2018b; Meresman et al.,
2021). The wound healing effect of PUE has been confirmed in various
studies (Bharti et al., 2020; Wang et al., 2020b; Ou et al., 2021). In order
to maximize function of PUE in wound healing, its sustained delivery by
hydrogels is suggested. CS/PUE hydrogels have been utilized for pur-
pose of wound healing in DM, and such hydrogels promote angiogenesis.

MiR-29 upregulation leads to inflammation and delays wound healing in
DM, while CS/PUE hydrogels reduce miR-29 expression to decrease
levels of IL-1p and TNF-a to facilitate wound healing (Zeng et al., 2023).
The newer types of hydrogels are thermosensitive CS hydrogels that can
be used for insulin delivery. CS, gelatin, and HTCC have been exploited
to develop thermosensitive hydrogels and have been loaded with clinical
levels of insulin. These hydrogels displayed a low gelation time, uniform
pore structure, and favorable swelling behavior that can encapsulate
high levels of insulin and mediate its sustained release (Bahmanpour
etal., 2021). The thermosensitive hydrogels derived from CS are capable
of increasing expression levels of VEGF and reducing pro-inflammatory
factors to accelerate wound healing in an animal model (Zhang et al.,
2021). Loading FGF/VE-cadherin in CS/alginate hydrogels results in
development of platforms that can enhance skin repair (Wei et al.,
2022). Moreover, antibacterial peptides can be loaded in hydrogels to
accelerate wound healing through promoting levels of VEGF, EGF, and
CD31 and decreasing inflammatory factors (Huang et al., 2022). A
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Table 3

The applications of CS-based hydrogels in DM therapy.

Hydrogel

Remark

Ref

Insulin-loaded chitosan
nanoparticles/PLGA-
PEG-PLGA hydrogel

Thermosensitive chitosan
hydrogel

Chitosan and
carboxymethyl cellulose-
based 3D multifunctional
bioactive hydrogels

Chitosan-based
polyurethane hydrogel

Carboxymethyl chitosan-
based hydrogels

Polyvinyl alcohol-chitosan
hydrogel

Alginate/chitosan-based
hydrogel

Self-healing carboxymethyl
chitosan/oxidized
carboxymethyl cellulose
hydrogel

Self-healing chitosan-based
POSS-PEG hybrid
hydrogel

Genipin crosslinked
chitosan-fiber hydrogel

Chitosan/silk hydrogel
assembled with exosomes

Carboxymethyl
B-cyclodextrin grafted
carboxymethyl chitosan
hydrogel-based
microparticles

Cellulose nanofibrils
reinforced chitosan-
gelatin based hydrogel

Nitric oxide releasing
chitosan-poly (vinyl
alcohol) hydrogel

Amelioration of neuropathy
Decreasing scotopic B-wave
amplitude

Alleviation of retinal micro- and
ultrastructural changes
Decreasing apoptosis
Controlled release of insulin in
150 h

Exerting hypoglycemic effect
after subcutaneous injection
Loading curcumin in hydrogels
for tissue regeneration impact
Increasing number of
fibroblasts, keratinocytes, and
collagen

Triggering epidermal junction
Transplantation of
mesenchymal stem cells derived
from bone tissue for accelerating
wound healing in DM
Enhancing generation of Ki67
Increasing epithelization and
collagen deposition

Enhancing hair follicle
generation

Promoting neovascularization
through increasing generation
of CD31 and CD34

Loading honey bee venom in
hydrogels

Anti-inflammatory function
Promoting wound healing
process

Delivery of
polydeoxyribonucleotide as a
gene product in wound healing
acceleration

High cellular uptake by skin
fibroblasts

Precise detection of glucose with
sensitivity range of 100 pM to 5
mM

Detection limit of 0.029 mM
High biocompatibility of device
A novel platform for wound
dressing

Antibacterial activity
Enhancing proliferation and
migration of cells

Loading clemastine fumarate in
hydrogels to induce its sustained
release for promoting wound
healing

Delivery of curcuma zedoaria
polysaccharide to elevate
collage deposition for
promoting wound healing in
diabetic rats

Sustained release of insulin in
time interval of 6-12 h to
decrease glucose levels

Loading nanoemulsion of
oregano essential oil in
hydrogels reduce scar
generation and to promote
granulation

Enhanced epithelization
Stimulation of angiogenesis and
hence, it is a promising platform
for diabetic patients having
chronic wounds

Rong et al.
(2019)

Ghasemi Tahrir

et al. (2016)

Shah et al.

(2023)

Viezzer et al.

(2020)

Hao et al.
(2022b)

Amin and
Abdel-Raheem
(2014)

Jing et al. (2021)

Shen et al.
(2021)

Li et al. (2023)

Zuo et al. (2023)

Xu et al. (2018b)

Yang et al.
(2020a)

Razack et al.
(2023)

Zahid et al.
(2019)
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Table 3 (continued)

Hydrogel Remark Ref

Composite hydrogel of
chitosan/heparin/poly
(y-glutamic acid)

Loading superoxide dismutase
in hydrogels that increase
collagen deposition and
promote wound closure
Possessing antioxidant activity
Providing controlled release of
Tibetan to enhance proliferation
rate of HUVECs

Enhancing collagen deposition
and mediating anti-
inflammatory activity

Zhang et al.
(2018)

Polyvinyl alcohol/chitosan
composite hydrogels

Wang et al.
(2021b)

Photocrosslinkable Loading FGF-2 in hydrogels to Obara et al.
chitosan hydrogel enhance wound closure (2003)

Thermosensitive Injectable Encapsulation of mesenchymal Yang et al.
Chitosan/Collagen/ stem cells in hydrogels to (2020b)

B-Glycerophosphate
Composite Hydrogels

A self-healing hydrogel
based on crosslinked
hyaluronic acid and
chitosan

increase proliferation and
paracrine secretion

Acidic response and release of
taurine molecules to transfer it
into wound area

Increasing proliferation
Reducing number of
inflammatory factors

Future application for wound
healing in DM
Functionalization of hydrogels
with collagen and EGF
Elevating proliferation of NIH
3T3 cells

Increasing wound healing and
closure

Zhou et al.
(2022¢)

Dextran/chitosan-based Hu et al. (2022a)

hydrogels

recent experiment has prepared CS/sodium alginate/velvet antler blood
peptides that have high antioxidant activity and low hemolysis rate.
They induce angiogenesis and proliferation of cells and decrease
inflammation to promote wound healing. Mechanistically, such hydro-
gels stimulate PI3K/AKT/mTOR/HIF-1a/VEGFA and diminish TNF-o
and IL-1p levels in promoting wound healing in DM (Hao et al., 2022a).
In fact, when wounds are covered with hydrogels, they have ability to
change the microenvironment in an optimal way to increase process of
wound healing. Hydrogels can deliver rhEGF to wound site for pro-
moting healing process. Furthermore, availability of drugs is enhanced
by hydrogels, and they elevate proliferation and migration of cells. They
inhibit DNA damage and reduce inflammation in wound healing accel-
eration (Chang et al., 2022). Therefore, hydrogels are promising carriers
and structures for treatment of DM and its complications, particularly
wound healing, as summarized in Table 2. In wound healing, CS-based
hydrogels demonstrate high application because of their efficacy in
enhancing collagen deposition (Li et al., 2021b), delivering therapeutic
compounds such as NO (Razmjooee et al., 2022), enhancing skin tissue
maturation (Patil et al., 2019), reducing ROS levels and exerting anti-
bacterial activity (Pan et al., 2022), promoting epithelial layer formation
(Ahmed et al., 2021), possessing immunomodulatory activity (Ragab
et al., 2019), and promoting collagen maturation (Lee et al., 2021). All
of these benefits advocate the application of CS-based hydrogels for
wound healing acceleration in DM. However, more studies about using
hydrogels for sustained release of therapeutic compounds in other
complications of DM should be performed (Fig. 4 and Table 3).

6. Chitosan-based platforms in delivery of natural products

Phytochemicals and overall, plant-derived natural compounds are
promising agents in DM therapy. However, one of their problems is low
bioavailability, and in the treatment of some of the complications of DM,
including neuropathy, they cannot pass through a biological barrier
such as the blood-brain barrier. Therefore, nano-scale delivery systems
are required for delivery of phytochemicals, which is the purpose of the
current review. Thymoquinone (TQ) is a natural compound that has
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been extensively utilized in DM therapy. TQ improves the function of
liver and kidney in animal models, and neuroprotective factors such as
BDNF, TH, and NGFR are normalized upon administration of TQ
(Alkharfy et al., 2022). Furthermore, co-application of TQ and ischemic
preconditioning can reduce apoptosis and pro-inflammatory factors
including TNF-a and IL-1p to exert cardioprotective effects (Ran et al.,
2021). CS-based nanostructures can improve function of TQ in treat-
ment of diabetic rats. They had a particle size of 74.25 nm with an
average size of 50 nm. Moreover, they provided a prolonged release of
78.5% of TQ. The TQ-loaded CS nanostructures did not demonstrate
toxicity on normal lung cells, and they improved glycemia, dyslipide-
mia, inflammation, and oxidative stress in DM (Hosni et al., 2022). CS
can be used for development of micro- and nano-scaffolds that are
biocompatible and biodegradable, and after loading curcumin into
scaffolds, they can increase wound healing and closure (Alavi et al.,
2022). Moreover, CS and alginate can be co-used in development of
nanostructures for DM therapy, and they enhance glucose uptake in
HepG2 cells (Surendran and Palei, 2022). One of the ways is to develop
CS nanostructures and then coat them with CS to mediate delivery of
naringenin as a natural product. The encapsulation efficiency of
alginate-coated CS nanostructures is more than 90%, and they mediate
controlled release in response to pH. The nanostructures do not show
toxicity on normal cells, and they can exert a hypoglycemic impact.
Moreover, they are promising structures for oral delivery of naringenin
(Maity et al., 2017).

P-coumaric acid is another compound used in the treatment of DM
that reduces oxidative damage and ameliorates nephropathy in diabetic
rats (Mani et al., 2022). Furthermore, the expression levels of MDA,
TLR-4, IL-6, TGFf1, and collagen will reduce in kidney upon p-coumaric
acid administration to alleviate nephropathy (Zabad et al., 2019). A
combination of p-coumaric acid and gallic acid is beneficial in
decreasing oxidative damage in brain tissue, apoptosis inhibition, and
alleviation of inflammation in treatment of diabetic neuropathy
(Abdel-Moneim et al., 2017). The delivery of p-coumaric acid with CS
nanoparticles in treatment of DM was performed. Such nanostructures
had a particle size of 283 nm and important pharmacological activities,
including antioxidant, anti-inflammation, antimicrobial, and
anti-thrombotic properties that are beneficial in DM therapy (Venka-
tesan et al., 2022b). One of the most well-known natural compounds in
DM therapy is curcumin, which reduces NF-kB expression while stimu-
lating angiogenesis and osteogenesis, reducing diabetic osteoporosis
(Fan et al., 2022). The nanoemulsions of curcumin have been developed
to increase its potential in DM therapy, and such nanoformulations are
able to reduce levels of inflammatory factors, COX-2, caspase-3, and
NF-kB in brain injury alleviation (Saleh et al., 2022). Even analogs of
curcumin, such as JM-2, can suppress NF-xB axis to reduce inflammation
and ameliorate cardiomyopathy (Wang et al., 2022b). CS nanostructures
are suggested to be promising factors for delivery of curcumin in DM
therapy. Due to low particle size of curcumin-loaded CS nanostructures
(74 nm), they can be internalized by cells. Moreover, curcumin-loaded
CS nanoparticles have been able to enhance translocation of GLUT-4
and transfer it to the cell surface. Furthermore, this impact is due to
Akt phosphorylation and subsequent expression of GSK-3p and its
phosphorylation as a downstream target (Chauhan et al., 2018).

Berberine (BBR) is another natural compound for DM therapy, and
one of its applications is the amelioration of diabetic nephropathy. BBR
reduces the inflammatory indices, including IL-6 and TNF-o, and re-
duces oxidative damage by promoting SOD levels. Moreover, BBR has
anti-fibrotic activity and decreases lipid levels, which are risk factors for
diabetic nephropathy (Hu et al., 2022b). A combination of BBR and
huangbai liniment has been used for diabetic wound healing that pre-
vents apoptosis via caspase-3 down-regulation and enhances TIMP1 and
TGFB1 levels (Zhang et al., 2022b). Moreover, BBR is beneficial in
amelioration of diabetic atherosclerosis through promoting KLF16 and
PPAR« levels (Man et al., 2022). The lecithin-CS nanostructures have
been beneficial in delivery of BBR, and they show synergistic effects in
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Table 4
The use of CS-based nanostructures for delivery of natural products in DM
therapy.
Nanocarrier Remark Ref
Curcumin-loaded chitosan Impregnation of CS Karri et al.
nanoparticles nanostructures in collagen- (2016)
alginate scaffolds
Stimulation of contraction in
wounds
High epithelization
Accelerating wound healing
Inducing thick granulation
tissue generation
Cynometra cauliflora High antimicrobial activity in Samling et al.
essential oil-loaded diabetic wound (2022)
chitosan nanoparticles microorganisms
chitosan-encapsulated Preventing injuries in kidney Sudirman et al.
curcumin and heart in TIDM (2019)
Reducing hypertrophy
Decreasing nucleus
enlargement
Curcumin coated 3D Accelerating wound healing Gupta et al.
biocomposite scaffolds (2022)

based on chitosan and

cellulose
Polydatin-loaded chitosan Reducing oxidative damage Abd El-Hameed
nanoparticles and inflammation et al. (2021)
Down-regulation of IL-1p and
TNF-a
Chitosan-gallic acid conjugate ~ High thermal stability and Liu et al. (2013)
crystallinity of conjugate
Promoting a-glucosidase and
a-amylase inhibitory activity
Chitosan-sodium alginate- Increasing bioavailability of Toragall and
fatty acid nanocarrier luteolin Baskaran
Protection of retinal cells (2021)

against oxidative damage

Polydatin-loaded chitosan Decreasing oxidative damage Abd El-Hameed

nanoparticles and inflammation in diabetic (2020)
nephropathy
Down-regulation of COX-2 and
NF-xB
Polydatin-loaded chitosan Reducing lipid peroxidation Mostafa et al.
nanoparticle product (2021)

Enhanced glutathione content
Promoting levels of SOD
Anti-inflammatory function
Alleviation of diabetic
cardiomyopathy

wound healing therapy. The designed nanostructures are able to
decrease inflammation and enhance fibroblast proliferation. Further-
more, BBR-loaded CS-lecithin nanostructures enhance deposition of
collagen and are promising factors for facilitating wound healing in DM
(Panda et al., 2021). Therefore, delivery of phytochemicals by CS
nanostructures improves their potential in DM therapy, as summarized
in Table 4 and Fig. 5.

7. Chitosan-based nanoplatforms for delivery of genes

Gene therapy has emerged as a new kind of therapy for DM, and since
genes can be degraded by enzymes and their blood circulation time is
low, it is suggested to use nanostructures for their delivery. One of the
benefits of CS-based nanostructures is their positive charge, which can
mediate stable complexes with genes. Although the main emphasis is on
drug delivery by CS nanostructures in DM therapy, there are a number of
studies using CS nanostructures for gene delivery in DM therapy. GLP-1
is one of the genes that has similar actions to insulin, and one of its
problems is its short half-life. The GLP-1 gene can be complexed with CS
nanostructures, and after application in vivo in animal models, there
was a significant enhancement in plasma insulin levels and also levels of
GLP-1. These CS nanoparticles increased levels of GLP-1 in plasma by
five times and normalized glucose levels (Jean et al., 2011). One of the
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reasons that causes delayed wound healing in DM is poor levels of VEGF.
The freeze-drying method was used to make CS scaffolds, which were
then loaded with DNA coding for perlecan domain I and VEGF189. The
DNA-loaded CS nanostructures accelerated wound healing in vivo, and
they enhanced blood vessels. Moreover, DNA-loaded CS nanoparticles
enhanced connective tissue matrix, and due to their angiogenesis in-
duction activity, they are promising for wound healing acceleration in
DM (Lord et al., 2017). The insulin gene is known as pCMV. Ins can be
loaded on CS nanostructures, and after oral administration through
gavage, the blood glucose levels were reduced. Moreover, the expression
of insulin gene mRNA and insulin were only observed in treated groups
(Niu et al., 2008).

8. Chitosan-based nanostructures and diabetic complications: A
brief discussion

The previous sections provided a detailed discussion of using CS-
based nanoplatforms for treatment of DM. To summarize, this section
provides an overview of using such nanoparticles in treatment of dia-
betic complications. The most important application of CS-based nano-
particles is in wound healing. In diabetic patients, the process of wound
healing is delayed, and there is an urgent need for therapies in man-
agement of chronic wounds. CS/PVA nanofibers have been developed
for antimicrobial activity in wounds in DM, and they have a high odor
absorbing ability. Such nanofibers have high biocompatibility, and 2
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weeks of wound dressing revealed high potential of these dressings in
DM (Ahmadi Majd et al., 2016). The immunomodulatory activity and
long-term anti-inflammatory function have made CS-based platforms
promising structures for wound healing (Maita et al., 2022). Another
complication of DM is damage to liver and heart. The stabilization of
selenium nanoparticles with CS results in upregulation of Bcl-2 and re-
duces Bax/Bcl-2 ratio in treatment of DM, reducing damage to liver and
heart (Mohamed et al., 2021). The lipid and cholesterol metabolism can
be regulated and monitored by CS, preventing injury to kidney in DM
(Sutthasupha and Lungkaphin, 2020), and this is why focus has been
directed towards development of CS-based nanostructures. Therefore,
considering the potential functions of CS-based nanostructures, it is
highly suggested to use them in DM therapy and alleviation of its
complications, which are summarized in Table 5 and Fig. 6.

9. Conclusion and remark

The treatment of diabetes mellitus is not limited to the use of ther-
apeutic medications; rather, interdisciplinary techniques for the de-
livery of therapeutic compounds should be offered. A lack of insulin
secretion, for instance, can lead to the development of DM, which is why
research has concentrated on the oral administration of insulin in the
treatment of DM. However, the absorption of insulin is low, and it may
be degraded in stomach. Therefore, there should be nanocarriers for
insulin delivery in DM therapy. On the other hand, various kinds and
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Table 5
An overview of using CS-based nanostructures in DM therapy and its
complications.

Platform

Remark

Ref

Collagen/Chitosan Gels
Cross-Linked with Genipin

Dual-functional hybrid
quaternized chitosan/Mg/
alginate

Chitosan-Vaseline® dressing

W/0 Hypaphorine-Chitosan
Nanoparticles

Chitosan hydrogels loaded
with silver nanoparticles
and calendula extract

Chitosan/polyvinyl alcohol/
zinc oxide nanofibrous
mats

Chitosan/alginate/
maltodextrin/pluronic-
based mixed polymeric
micelles

Stabilized-chitosan selenium
nanoparticles

All-Trans Retinoic Acid
loaded Chitosan/
Tripolyphosphate Lipid
Hybrid Nanoparticles

A promising platform for
wound dressing
Enhancing collagen
deposition

Promoting hair follicle
repair and sebaceous gland
formation

A wound dresser with
antibacterial and
angiogenic functions

The electrical induction
enhances wound healing
process

Decreasing inflammation
to promote wound healing
process

Particle size of 50-100 nm
for silver nanoparticles
Prolonged release of
loadings for accelerating
wound healing
Preparation through
electrospun method
Antioxidant and
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types of nanostructures have been introduced for purpose of DM ther-
apy, and among them, biocompatible nanocarriers are of interesting
since they can be used in the future in treatment of patients. The purpose
of the current review was to evaluate the role of CS-based nanomaterials
for DM therapy. The first application of CS-based nanoparticles is in
delivery of insulin through oral route for treatment of DM patients. The
application of CS nanocarriers allows the sustained release of insulin,
improving its bioavailability and pharmacokinetics. The CS-based
nanoparticles are able to protect insulin against degradation by stom-
ach juice, which promotes its function in DM therapy. One of the newest
advances in the field of DM therapy is the development of CS nano-
particles with mucoadhesive properties that can mediate better insulin
release in DM therapy. However, CS-based nanoparticles cannot be used
in treatment of all complications of DM, such as wound healing. In this
case, hydrogels have been developed for sustained and prolonged
release of therapeutic agents. Due to the biocompatibility of CS,
hydrogels have been developed based on CS, and such biodegradable
hydrogels with low toxicity features can be employed for DM therapy,
especially for the treatment of wound healing, which is a major
complication. Plant-derived natural products have attracted much
attention for treatment of DM mellitus, but their bioavailability is poor
and their therapeutic index is limited. Therefore, it is highly suggested to
use nanoparticles for delivery of phytochemicals, and in this review, it
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was found that the delivery of phytochemicals by CS-based nano-
particles improves the potential of DM therapy. Since CS-based nano-
particles demonstrate high efficiency in DM therapy, future studies can
focus on using them for treatment of DM patients in clinical trials. One of
the most prominent advances is the development of CS-based hydrogels
for DM therapy. The reason for using CS in development of hydrogels is
to have platforms with high biocompatibility so that their future clinical
application for diabetic patients is paved. Moreover, other biopolymers,
such as hyaluronic acid, can be used for the synthesis of hydrogels, and
since hyaluronic acid has antibacterial activity, this can improve po-
tential for wound healing. More importantly, one of the benefits of
hydrogels is their ability to sustain the release of therapeutics that can be
genes or drugs, and when wounds are dressed with hydrogels, they
mediate prolonged release of drugs to increase wound healing acceler-
ation. The most common use of hydrogels is wound healing in diabetic
patients, but since hydrogels possess sustained release of therapeutics, it
is suggested to use them also for treatment of other diabetic
complications.

The CS-based nanostructures have been used extensively in therapy
of various human diseases. The first benefit of nanostructures fabricated
from CS and casein is that they are biodegradable (Lin et al., 2022). The
CS-based nanostructures are promising carriers for delivery of chemo-
therapy drugs in cancer therapy and they reduce ICsy along with
impairing tumorigenesis in vivo (Vikas et al., 2022). The CS-based
nanoparticles can promote accumulation of drug at cancer site and
demonstrate high cytotoxicity (Wang et al., 2022c). Furthermore, CS can
be used for synthesis of hydrogels in loading other nanostructures. For
instance, gelatin and CS have been used to prepare thermosensitive
hydrogels in loading 5-FU-alginate nanostructures for purpose of skin
delivery (Nawaz et al., 2022). Moreover, when LL37 is delivered by CS
nanostructures, the ability as antibacterial and antifilm compound in-
creases (Rashki et al., 2022). The bacteria are capable of developing
multidrug resistance and mannose-functionalized CS/PLMA nano-
materials are able to overcome this condition (Arif et al., 2022).
Curcumin-loaded CS nanostructures have been also promising for anti-
oxidant edible coating (Shen et al., 2022). CS-based nanoparticles have
shown capability in treatment of ocular diseases (Kalam et al., 2022) and
they can also deliver genes in disease therapy (Moghadam et al., 2022).
Since CS-based nanostructures have been extensively used in treatment
of various diseases, the current paper was dedicated in understanding
role of these nanoparticles in treatment of DM. The oral administration
of antidiabetic drugs such as Exenatide can be facilitated using CS-based
nanomaterials (Yang et al., 2022). The implant osseointegration in
TIIDM can be accelerated using CS-PLGA microspheres embedded with
exendin-4 (Shi et al., 2022). Because of antioxidant and anti-apoptotic
function of CS-based nanoparticles, they can protect heart cells in DM
(Wardani et al., 2022). Furthermore, polyelectrolyte complexes can be
designed from CS and fucoidan to provide controlled release of growth
factors in increasing growth and collagen accumulation in DM (Rao
et al., 2022). Although CS-based nanostructures are used extensively in
DM therapy (Saraswati et al., 2022; George and Shrivastav, 2023), the
main application of these nanomaterials is in accelerating wound heal-
ing in DM through their photothermal, antimicrobial,
anti-inflammatory, antioxidant, angiogenic and anti-apoptotic functions
and properties (Yu et al., 2022; Hou et al., 2022; Lv et al., 2022; San-
apalli et al., 2023; Hajati Ziabari et al., 2022; Perteghella et al., 2023).
Moreover, since insulin is widely used for DM therapy, smart CS/algi-
nate nanostructures have been developed for insulin delivery to improve
its efficacy (Zhang et al., 2022c). Hence, CS is a versatile compound in
treatment of DM and based on the discussions of this paper, it can be
concluded that CS-based nanoarchitectures are promising candidates.
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Fig. 6. CS-based nanostructures for gene delivery and alleviation of diabetic complications.
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