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Abstract

Breast cancer is the most malignant tumor in women, and

there is no absolute cure for it. Although treatment

modalities including surgery, chemotherapy, and radio-

therapy are utilized for breast cancer, it is still a life‐

threatening disease for humans. Nanomedicine has

provided a new opportunity in breast cancer treatment,

which is the focus of the current study. The nanocarriers

deliver chemotherapeutic agents and natural products,

both of which increase cytotoxicity against breast tumor

cells and prevent the development of drug resistance. The

efficacy of gene therapy is boosted by nanoparticles and

the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi,

promoting their potential for gene expression regulation.

The drug and gene codelivery by nanoparticles can exert a

synergistic impact on breast tumors and enhance cellular

uptake via endocytosis. Nanostructures are able to induce

photothermal and photodynamic therapy for breast tumor

ablation via cell death induction. The nanoparticles

can provide tumor microenvironment remodeling and

repolarization of macrophages for antitumor immunity.

The stimuli‐responsive nanocarriers, including pH‐, redox‐,

and light‐sensitive, can mediate targeted suppression of

breast tumors. Besides, nanoparticles can provide a

diagnosis of breast cancer and detect biomarkers. Various

kinds of nanoparticles have been employed for breast

cancer therapy, including carbon‐, lipid‐, polymeric‐ and

metal‐based nanostructures, which are different in terms

of biocompatibility and delivery efficiency.

K E YWORD S

breast cancer, cancer therapy, clinical application,
nanotechnology, stimuli‐responsive nanocarriers

1 | INTRODUCTION

One of the malignant diseases negatively affecting the life quality of women around the world is breast cancer.1

Breast cancer is the most aggressive tumor, and its incidence rate is gradually increasing. According to estimates, up

to 2.2 million females with breast cancer were diagnosed in 2020.2 About 11.7% of new cancer cases are related to
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breast cancer, and almost 279,100 cases will have been diagnosed with breast cancer by the end of 2020.2,3 There

are a number of factors affecting breast cancer development and initiation, including sex, family history, estrogen,

gene mutations, and race.4,5 Breast cancer is commonly observed in the glandular epithelial tissue of the breast, and

upon exposure to tumorigenesis agents or abnormal events occurring in breast tissue, benign tumors or metastatic

cancers may develop. One of the factors that significantly reduces the survival rate of breast cancer patients is

metastasis to various organs, including bone, liver, lung, brain and lymph nodes.6,7 Breast cancer is divided into various

subtypes, including luminal A, luminal B, HER2 + B2, HER‐2 overexpression and triple‐negative breast cancer, among

others.8 The classification of breast cancer into subtypes is important for predicting the response of patients to

therapy and finding relevant solutions.9 The surgery is a promising approach for the treatment of breast cancer. A

combination of surgery and adjuvant radiation appears to be effective in improving the survival rate of patients and

reducing the chance of recurrence. It has been reported that among 10,801 breast cancer patients who have

undergone mass resection, application of radiotherapy significantly improves their survival rate and decreases their

10‐year recurrence rate.10 Utilization of nanoradiosensitizers composed of high atomic number elements has been

shown to significantly improve cancer therapy efficacy.11–13 Furthermore, chemotherapy or its combination with

surgery or radiotherapy can be employed in breast cancer therapy.14,15 In recent years, immunotherapy approaches

such as application of checkpoint inhibitors have been developed for breast cancer treatment and to improve the

overall survival of patients. However, as most breast cancer patients are diagnosed at advanced stages, the

aforementioned therapeutic modalities appear to be less effective, and resistance can be commonly observed.

Although recent preclinical experiments have focused on the application of novel therapeutics such as gene therapy

and phytochemicals with antitumor activity, breast cancer treatment is still a challenge. Various studies have shown

that cancer treatment is achieved using an interdisciplinary approach. Both engineering and biology can be combined

in the treatment of breast cancer, and nanotechnology and its introduction in breast cancer therapy for drug and gene

delivery, immunotherapy and bioimaging can make significant progress in the treatment of breast cancer.16–20

The current review article focuses on nanotechnological approaches in the treatment of breast cancer. At first,

the role of nanostructures in the delivery of genes and drugs and their codelivery is discussed, and it is shown how

nanocarriers can improve the potential of aforementioned therapies in breast cancer suppression. Then, the focus is

directed toward the role of nanoparticles in breast cancer immunotherapy and bioimaging. Then, surface

modification of nanoparticles and their increased selectivity towards breast cancer cells are discussed, and finally,

challenges and opportunities for clinical application are described.

2 | DRUG DELIVERY

2.1 | Phytochemicals

Among various kinds of anticancer agents employed for breast cancer therapy, plant‐derived natural compounds

are of importance. Compared to synthetic drugs, phytochemicals are more affordable, and they have negligible

adverse impacts. Besides, due to the capacity of phytochemicals to target various types of signaling networks

involved in tumor progression, they can effectively suppress tumor growth and invasion. More importantly, when

tumor cells develop resistance to synthetic compounds, phytochemicals with a different mechanism of action can

be used to sensitize tumor cells to chemotherapy drugs, and since phytochemicals display pleiotropic function, they

are promising compounds for mediating chemosensitivity. However, clinical application of plant‐derived natural

compounds is low due to their poor bioavailability, which diminishes their therapeutic index.21,22 Notably, various

kinds of nanoparticles have been developed for the delivery of phytochemicals in effective cancer therapy. An

experiment has developed mesoporous silica nanostructures (MSNs) for curcumin delivery in breast cancer

suppression. Large surface area, high biocompatibility and ease of modification are among the benefits of MSNs

(Figure 1).23 The prepared MSNs were modified with hyaluronic acid or folic acid, and then curcumin, as the
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F IGURE 1 (A) Mechanism of action in tumor cells, (B) Thermal images, and (C) corresponding tumor
temperature, (D) in vivo fluorescent images, (E) ex vivo images, and (F) fluorescent intensity in different
organs. Reprinted with permission from23 Elsevier. [Color figure can be viewed at wileyonlinelibrary.com]
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anticancer agent, was loaded on MSNs. Cellular uptake of curcumin‐loaded MSNs enhances due to

functionalization, while folic acid modification has a better impact compared to hyaluronic acid. By accumulating

at the tumor site, nanoparticles promoted curcumin delivery to cancer cells, and a significant increase in its

cytotoxicity occurred, while its biocompatibility and safety profile were maintained.24 In addition to curcumin,

quercetin has also been loaded onto silica. The resulting quercetin‐loaded silica nanostructures had 82 nm size and

they induced apoptosis. Furthermore, quercetin‐loaded silica nanoparticles remarkably decreased the viability.25

In addition to MSNs, polymeric nanostructures have been designed to deliver natural compounds in breast

tumor suppression. Polymeric nanoparticles from poly‐glycerol‐malic acid‐dodecanedioic acid (PGMD) have been

fabricated, and then, curcumin was loaded on these polymeric nanoparticles with 110 and 218 nm size and −18.9

and −17.5mV zeta potential, with 75%−81% EE. The curcumin‐loaded PGMD nanostructures suppressed the

carcinogenesis, induced apoptosis and nuclear anomalies. The IC50 value of curcumin‐loaded PGMD nanostructures

was around 30−45 μM.26 Another study developed chitosan‐protamine nanostructures for curcumin delivery. The

curcumin‐loaded chitosan‐protamine induced apoptosis through Bcl‐2 suppression, and they decreased breast

cancer cell survival and levels of NF‐κB, TNF‐α and IL‐6.27 Due to the potential of chitosan in improving the safety,

this linear polysaccharide is extensively utilized for pharmaceutical approaches.28,29 The chitosan nanostructures

were prepared for quercetin and had an encapsulation efficiency of 83%. Loading quercetin onto nanostructures

promoted their particle size to 490−502 nm, and cargo release accelerated at pH 5.0. The quercetin‐embedded

nanostructures suppressed the progression and metabolism, and they preferentially aggregated in cancer tissue

while their biocompatibility and safety profile were high.30

Metal nanostructures are another kind of nanocarrier utilized for phytochemical. Berberine was loaded onto

gold nanoparticles and they were internalized through clathrin‐mediated endocytosis and autophagy, and they

significantly decreased the viability. Apoptosis was responsible for the decreased progression of breast tumor by

berberine‐loaded gold nanoparticles, and upregulation of Bax and p21 were observed.31 The resveratrol‐loaded

gold nanostructures had 30.75 nm size and −32.8 mV zeta potential. The resveratrol‐loaded gold nanoparticles

suppressed the growth and metastasis of breast cancer cells via through suppressing MMP‐9 and COX‐2.32 Low

particle size, good zeta potential and stability are among the advantageous of metal‐based nanostructures.33

However, the biocompatibility of gold nanoparticles is a challenging issue, and their modification with natural

compounds such as chitosan can be employed to enhance their biocompatibility.

Carbon‐based nanostructures are also suitable carriers for naturally occurring compounds. A recent experiment

has developed graphene quantum dots (GQDs) to deliver curcumin. The modification of GQDs with glucosamine

(GlcN) was performed to selectively target overexpressed GlcN receptor‐tumor cells. The curcumin‐loaded GQDs

displayed 20−30 nm size, prolonged delivery of curcumin and more release at pH 5.5 (37%) instead of pH 7.4 (17%).

The GQDs internalized in MCF‐7 cells through endocytosis and decreased cancer cell viability.34 The reduced

graphene oxide (GO) sheets are also appropriate carriers for phytochemicals because of stability and zeta potential

(−20mV).35 It is worth mentioning that GO nanostructures can provide photothermal therapy for synergistic impact

with antitumor agents.36 Improved half‐life, prolonged circulation time, increased internalization in tumor cells and

promoted anticancer activity result from the nanoarchitectures for delivery of phytochemicals in breast tumor

suppression (Table 1).45,56–61

2.2 | Synthetic molecules

In addition to naturally occurring compounds, synthetic molecules can also be delivered by nanostructures. Tumor

cells have the capacity to develop resistance to chemotherapeutic agents including doxorubicin (DOX), cisplatin

(CP), paclitaxel (PTX) and docetaxel (DTX), among others. The GQDs were modified with scFv as an antibody to

selectively target the EGFR. The CP‐loaded GQDs had −31.3 mV zeta potential, showing stability. The drug loading

was 50%, and they released CP in a pH‐responsive manner. These nanocarriers internalized in cells and suppressed
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TABLE 1 The nanostructures for phytochemical delivery in breast cancer therapy.

Nanoarchitecture Features Cargo Remarks References

Lipid nanoarchitectures 302.5 nm Curcumin Increased internalization in tumor
cells, reducing tumor progression
and enhancing radio‐sensitivity

[37]

+41.4mV

Solid lipid nanoparticles 30‐50 nm Curcumin Apoptosis induction [38]

−25.3mV Enhanced Bax/Bcl‐2 expression

72.47% Downregulation of cyclin D1
and CDK4

Copper complex micelle
nanostructures

248 nm Curcumin Enhanced stability [39]

−0.11mV Promoting curcumin's Anticancer
function

80% Suppressing growth

HAS nanoparticles 180 and 220 nm Curcumin Apoptosis induction, increased
stability and inhibiting tumor
progression

[40]

−7 mV

PLGA nanostructures 347.4 nm Curcumin Spherical shape with smooth surface
morphology

[41]

GANT61 Apoptosis and autophagy induction to
reduce tumor cell viability

Phenylboronic acid‐
functionalized ZnO
nanostructures

166.3, 284.96
and
413.63 nm

Curcumin Selective targeting of tumor cells due
to PBA modification, pH‐sensitive
release at tumor

microenvironment and inducing
oxidative stress by curcumin and
Zn2+ ions

[42]

17.9, −4.7 and
−16.4 mV

Folic acid‐modified
polymeric nanoparticles

186.52 nm Doxorubicin Enhanced cellular uptake, apoptosis
induction and reducing tumor
progression

[43]

−18.87mV Curcumin

97.64%
(doxorubicin)

78.13%
(curcumin)

SPC‐TPGS nanoparticles 71 nm Pterostilbene Enhanced water solubility [43]

−40.8mV High bioavailability of pterostilbene

98.24%

Layer‐by‐layer
nanostructures

217 nm Resveratrol High biocompatibility, increased

cellular uptake, antitumor activity
and decreasing colony formation
capacity

[44]

+45mV Tamoxifen

Solid lipid nanoparticles 169 and 203 nm Resveratrol Increased cellular uptake,
mitochondrial dysfunction,

apoptosis induction and enhanced
cytotoxicity against tumor cells

[45]

−27.8 and

−25.6mV

Gold nanostructures 22.28 nm Resveratrol Suppression of MMP‐9 and COX‐2
expression

[32]
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TABLE 1 (Continued)

Nanoarchitecture Features Cargo Remarks References

Chondroitin sulfate‐based
nanostructures

169.83 nm Quercetin NIR irradiation enhances ROS

overgeneration, mitochondrial
damage and suppressing
progression of breast tumor cells

[46]

−19.71mV Chlorin e6

Paclitaxel

Chitosan‐functionalized
copper oxide

nanostructures

50 nm Quercetin Exerting anticancer activity and
reducing progression of breast

tumor via p53 overexpression and
elevating levels of cytochrome C
and caspase‐3

[47]

−17.6mV

Mesoporous silica
nanoparticles

200 nm Quercetin Enhanced internalization due to
selective targeting of cells

overexpressing folate receptor

[48]

−25 mV Enhanced drug bioavailability

Apoptosis induction and cell cycle
arrest

Inhibiting Akt signaling and promoting

Bax expression

Gold nanoparticles 3‐4.5 nm Quercetin Apoptosis induction [49]

Enhancing nuclear condensation

Bax and caspase‐3 overexpression
and Bcl‐2 suppression

Inhibiting EGFR signaling and its
downstream target PI3K/Akt/
mTOR/GSK‐β axis

Superparamagnetic
magnetite nanoparticles

20 nm Quercetin Enhanced cytotoxicity of quercetin
against breast tumor cells

[50]

6.14 mV

PCL‐TPGS nanostructures 235 nm Quercetin Boosting anticancer activity of

quercetin by 2.9 times compared
to quercetin alone

[51]

−7.4 mV

MOEG‐PLA nanostructures 155.3 nm Quercetin Sustained release of quercetin [52]

−3.14mV Apoptosis induction

5.3% Cell lysis and preventing proliferation

in vivo

Lipid nanoparticles ‐ Quercetin High internalization of quercetin in
tumor cells

[53]

Inhibiting P‐gp activity

Cell cycle arrest at G2 phase

Stimulation of apoptosis and
autophagy

PLA nanoparticles 152 nm Quercetin Elimination of 50% of breast tumor
cells

[54]

62%

Porous silicon nanoparticles ‐ Quercetin Improving cytotoxicity of DOX against
breast tumor cells

[55]
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their progression; simultaneously, they provided bioimaging.62 Another study developed GO/polymeric

nanocomposites for DOX delivery. The nanocomposites had 51 nm size and an encapsulation efficiency of 82%.

DOX was conjugated to GO/polymeric nanocomposite and its release mainly occurred at acidic pH (41.2%), making

GO/polymeric nanocomposites suitable carriers for breast cancer therapy. The GO nanocomposites internalized

into cancer cells and reduced breast tumor viability.63 Furthermore, two chemotherapeutic agents can be

codelivered by GO nanocomposites. In an effort, polyhydroxyethyl PHEMA was bound to reduced GO and. DOX

and CP were loaded onto PHEMA/reduced GO nanocomposites via hydrogen bonding and π−π stacking, with 75%

and 82% EE, respectively. The nanocarriers had 70 nm size, and they showed high cellular uptake. They triggered

apoptosis and cell cycle arrest and provided a synergistic impact between DOX and CP.64 Therefore, carbon‐based

nanomaterials are ideal candidates.65,66

Liposome‐mediated drug delivery has been of importance.67 In an effort, TPGS‐modified liposomal

nanocarriers were designed for DOX delivery. The resulting DOX‐loaded liposomal nanocarriers had 98.2 and

117.6 nm size, zeta potentials of −38.7 and −36.4 mV, and encapsulation efficiencies of 66.8% and 73.5%,

respectively. The liposomes demonstrated prolonged release of DOX, and they released 83.6% and 69.8% of

DOX in 72 h. They had high hemocompatibility and effectively reduced breast cancer progression. The

modification of liposomes with TPGS improves their stability and stealth feature, as well as their anticancer

activity.68 The overexpression of P‐gp is responsible for DOX resistance. The DOX‐loaded liposomes and

modified with apolipoprotein A1 was performed to promote their cellular uptake. The liposomal nanoparticles

provided a burst release of DOX and suppressed breast cancer progression. Furthermore, by reducing off‐

targeting, DOX‐loaded liposomes reduce adverse impacts on heart.69 It is also worth mentioning that liposomes

show more internalization, making them appropriate nanocarriers for treatment and reversal of chemoresis-

tance in breast tumors.70

The lipid‐based nanoparticles can mediate the codelivery of DOX and CP in synergistic tumor removal.

Then, DOX and CP were embedded onto lipid nanostructures. The antitumor activity of drugs enhanced by lipid

nanoparticles exerted synergistic impact and effectively suppressed carcinogenesis.71 Pluronic prodrug

micelles can deliver DOX to breast cancer cells (MCF‐7). They showed high stability and have the capacity to

release at the cancer place due to cleavage of β‐carboxylic amide bonds in acidic TME. Due to the modification

of micelles by phenylboric acid (PBA), their internalization in MCF‐7 cells was elevated, and simultaneously,

their adverse impacts on healthy cells and organs were reduced. These DOX‐loaded micelles prevented

multidrug resistance in breast cancer and inhibited tumor progression up to 78% due to the synergistic impact

between DOX and F127.72 Another experiment developed mixed micelles from PPG‐grafted HA copolymers

(PPG‐g‐HA) and loaded with pluronic L61. High stability, good biocompatibility and high internalization in MCF‐

7 cells are characteristics of polymeric micelles. The DOX‐loaded PPG‐g‐HA/L61 showed high anticancer role

against breast tumor, while their toxicity on fibroblast L929 cells was low. They suppressed drug resistance and

improved the anticancer activity of DOX, which are of importance for breast cancer therapy.73 The

bioavailability and blood circulation time of irinotecan have also been enhanced by micelles to effectively

suppress breast cancer progression.74

The employment of nanoarchitectures enables the stimulation of more apoptosis in breast tumor compared to

free drug,75 and when they selectively deliver drug to the tumor site, their systemic toxicity significantly

diminishes.76 The internalization in tumor cells is mediated by endocytosis.77 A recent experiment developed

L‐lysine‐conjugated gold nanoparticles for CP delivery. They had 85 nm size and −25mV zeta potenial, showing

their capacity to internalize in breast tumor cells, and they also had high stability.78 It is worth mentioning that a

number of nanocarriers, such as gold nanoparticles, have anticancer activity via enhancing reactive oxygen species

(ROS) generation to mediate cell death and sensitize tumor cells to chemotherapy. Furthermore, gold

nanostructures can provide simultaneous chemotherapy and bioimaging, which are discussed in detail in the next

sections (Table 2).96,97
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2.3 | Phytochemical and synthetic molecule codelivery

The previous sections revealed that nanotechnological approaches elevate the cytotoxicity of anticancer drugs and

mediating effective breast cancer suppression.98 The synergistic impact between natural and synthetic drugs has

resulted in their co‐application for breast cancer. An experiment has developed amphiphilic copolymeric micelles

for codelivery of DOX and curcumin. The downregulation of P‐gp expression and ATP depletion (impairing P‐gp

activity) prevent the efflux of DOX from breast cancer cells,.99 Overall, P‐gp upregulation stimulates

chemoresistance.100–102 A study has developed multifunctional lipid nanostructures for PTX and curcumin

codelivery in breast cancer suppression. The folate‐modified lipid nanoparticles containing curcumin and PTX

reduced P‐gp expression to inhibit drug resistance. The nanocarriers enhanced the internalization and accumulation

of curcumin and PTX in cells via endocytosis and suppressed breast cancer progression.103

The MSNs are important for delivery because of entrapping drugs in their pores. For codelivery of curcumin

and PTX, an experiment prepared MSNs with a size of 115 nm and a pore size of 2.754 nm via an etching technique.

The surface coating of MSNs with a thickness of 10‐15 nm was then done with a PEGylated lipid bilayer. The lipid

bilayer was fabricated using film hydration method, and then curcumin and PTX were loaded in lipid bilayer‐coated

MSNs. The encapsulation efficiencies for PTX and curcumin were 77.48% and 30.70%, respectively. The

nanocarriers had a spherical shape, uniform dispersion, and the ability for sustained release of curcumin and PTX

that remarkably elevated their cytotoxicity against breast cancer.104 The PEGylated lipid bilayer‐coated MSNs can

be administered via intravenous and intratumoral routes and suppress tumor in vivo. They localized in lysosomes

and mitochondria, and by increasing the internalization of curcumin and PTX, they effectively suppressed breast

cancer progression.105 The curcumin‐ and DTX‐embedded solid lipid nanostructures were prepared with 247.5 nm

size, and 73.88% EE. Enhanced cellular uptake and decreased cancer cell viability result from curcumin‐ and

PTX‐loaded nanoarchitectures.106 Therefore, codelivery of natural compounds and synthetic molecules by

nanoplatforms improves cancer therapy (Figure 2).57

F IGURE 2 The application of nanostructures for delivery of synthetic agents and their codelivery. [Color figure
can be viewed at wileyonlinelibrary.com]
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3 | GENE DELIVERY

3.1 | RNA interference (RNAi)

RNAi was first discovered in 1998 in Caenorhabditis elegans and is considered an evolutionary cellular mechanism

started by double‐stranded RNAs (dsRNAs) that can silence target messenger RNA (mRNA) to prevent protein

synthesis. Small interfering RNA (siRNA) is the most well‐known tool of RNAi that is widely employed for gene

expression regulation. The task of siRNA is to silence target gene and suppress its activity in targeted cells.

However, the potential of siRNA and another RNAi tool, known as short hairpin RNA (shRNA), is limited due

to enzymatic degradation in blood circulation, low accumulation in tissue sites and off‐targeting features.

These drawbacks are complexly obvious in cancer therapy, which urges scientists to find solutions, of which the

application of nanostructures is one.107–111

The effective treatment of breast cancer by RNAi depends on identification of critical factors involved in its

progression and malignancy. For instance, PRDM14 shows low expression in healthy cells, while its expression level

undergoes upregulation in breast tumors, leading to stemness, invasion and drug resistance. Clinically, PRDM14

demonstrates overexpression in 23.8% of breast cancer patients. In an attempt, branched PEGylated poly‐L‐

ornithine (PLO) nanoarchitectures were developed for specific delivery of PRDM14‐siRNA. After intravenous

administration, siRNA‐loaded PLO nanoparticles significantly reduced PRDM14 expression, decreased tumor

proliferation and prevented breast tumor metastasis in vivo. These nanoparticles improved the survival of tumor‐

bearing mice and showed high biocompatibility in serum.112 However, this experiment did not investigate the

characteristics of nanostructures and how they can affect siRNA complexation and its role in gene silencing.

Noteworthy, the cellular uptake of naked siRNA appears to be low, and its degradation by enzymes in blood

circulation is another challenge. In an effort, non‐ionic surfactant vesicles (niosomes) were prepared, and then

Lifeguard (LFG)‐siRNA was loaded in hydrophobic core. To improve the internalization of siRNA‐loaded niosomes in

breast cancer cells, superparamagnetic iron oxide nanostructures were embedded into bilayer of niosomes. The

prepared nanostructures demonstrated particle sizes of 127 and 145 nm. The zeta potential of nanocarriers reached

−37.9 from −41.1 mV due to the connection between negatively charged niosome surface and positively charged

polyplexes. These nanoparticles effectively diminished expression level of LFG and enhanced sensitivity of breast

tumor cells to erlotinib or trastuzumab chemotherapy. The external magnetic field boosted intracellular

accumulation of nanostructures and induced apoptosis to reduce breast cancer viability.113 Therefore, it appears

that delivery of siRNA by nanostructures is a promising strategy in potentiating anticancer activity of

chemotherapeutic drugs.108

The interactions occurring in TME are responsible for increasing the progression of cancers. A similar story

occurs in breast cancer, and TME remodeling is followed for its treatment. The ion gelation method was employed

for preparation of PEG and MTC conjugates, and then VEGF‐ and MED1‐siRNAs were loaded onto nanostructures.

The siRNA‐loaded nanoparticles effectively decreased VEGF and MED1 expression and suppressed growth and

metastasis of breast cancer cells. The nanoarchitectures had high stability and promoted intracellular accumulation

of siRNAs. Furthermore, siRNA‐loaded nanostructures mediated polarization of M2 macrophages to M1

macrophages for TME remodeling and inhibiting breast cancer progression.114 Another important target in breast

cancer therapy is heat shock protein gp96, which has the capacity to transfer from reticulum to tumor surface.

A research group has developed CDO14 as a peptide cationic liposome and modified it with gp96 inhibitor, helical

polypeptide p37. Then, survivin‐siRNA was loaded onto these liposomes to treat breast cancer. These liposomes

effectively target breast tumor cells overexpressing gp96 on the cell membrane. The liposomal nanocarriers had

positive charge and high stability. They reduced survivin expression by siRNA in breast tumor cells to impair their

viability. The nanostructures promoted the accumulation of siRNA in breast tumor cells, and they effectively

inhibited tumor growth in vivo. Furthermore, delivery efficacy was boosted by surface‐modified liposomes.115

Overall, studies highlight the fact that siRNA is a potential tool for treatment of breast cancer, and the employment
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of nanocarriers significantly enhanced cellular uptake of siRNA and its efficacy in gene silencing and suppressing the

progression of breast cancer cells.114,116,117

Another RNAi tool in breast cancer therapy is shRNA. The conventional methods include conjugation of

anticancer drugs with genetic tools and their application in cancer therapy. However, such complexes have low

stability, and their drug loading efficacy is poor. An experiment has developed polylactide (PLA) micelles for

codelivery of MDR1‐shRNA and DOX in breast cancer therapy. At first, PLA‐DNA conjugates were developed that

were further assembled into micelles. Then, DNA was used as a promoter, and rolling circle transcription was

employed to synthesize poly‐shRNA on nanostructures. The nanoparticles accumulated in breast cancer cells and

led to a significant decrease in MDR1 expression, promoting DOX internalization, apoptosis induction and

improving therapeutic index.118

The RAN GTP (RAN) gene is another factor in increasing the metastasis of breast cancer cells via affecting

molecular pathways such as Ras and PI3K/Akt pathways. The PLGA nanoparticles were synthesized for delivery of

RAN‐siRNA. The resulting nanocarriers had a particle size of 237.71 nm, a zeta potential of −1.17mV and an

encapsulation efficiency of 80%. These biodegradable nanostructures released shRNA in MDA‐MB‐231 cells and

reduced RAN expression to suppress metastasis of breast cancer cells.118 The PEI nanostructures are considered

promising carriers for gene delivery. The DSPEI is a stimuli‐responsive kind of PEI that is used in nanoparticle

synthesis. An experiment has developed PEG‐DSPI nanostructures and modified them with RGD to enhance their

selectivity towards breast tumor cells. Then, p65‐shRNA was loaded into nanocomplexes to suppress NF‐κB

pathway. Both GSH and NIR can mediate the release of p65‐shRNA from nanocarriers and significantly reduce the

growth and metastasis of breast cancer cells. The cellular uptake of nanocarriers in breast cancer cells increased via

RGD‐mediated endocytosis. Nanocarriers had particle sizes of 12 and 50 nm and a zeta potential of 48.7 mV,

showing their high stability (Figure 3).119 Therefore, nanoparticles have opened a new window for treatment of

breast cancer via shRNA delivery.120

3.2 | CRISPR/Cas9 system

CRISPR/Cas9 is a potential tool for genomic screening to find novel targets for cancer therapy.121 The CRISPR/

Cas9 system is a part of immune defense system in prokaryotes that has been employed in recent years in breast

cancer treatment. Different kinds of genes can be regulated by CRISPR/Cas9 system, and this tool is beneficial in

understanding the function of certain genes in breast cancer progression to provide new insights for their

targeting in future experiments. For instance, miRNA‐3662‐HBP1 and FOXP3 can be modulated by CRISPR/Cas9

system to reduce breast tumor progression. Proliferation and cell cycle progression of these malignant tumors

and their therapy response are also modulated by CRISPR/Cas9 system.121–128 Noteworthy, delivery of CRISPR/

Cas9 system can pave the way for improving its efficacy in gene expression regulation, which is the focus of the

current section.

Most of the experiments have focused on delivery of RNAi and noncoding RNAs (ncRNAs) by nanostructures in

breast cancer therapy. However, there are two experiments showing CRISPR/Cas9 delivery for breast cancer. An

experiment has designed proton‐activatable DNA‐based nanosystems for codelivery of Cas9/sgRNA and DNAzyme

in breast cancer therapy. The scaffold of the nanosystem contained an Hhal enzyme cleavage site, a DNAzyme

sequence and ultra‐long ssDNA chains containing sequences for identification of sgRNA in Cas9/sgRNA. The

mechanism of action of nanosystem was interesting, so that DNAzyme cofactor Mn2+ compressed DNA chains for

forming nanostructures. The surface modification of nanostructures was performed with acid‐degradable polymer‐

coated HhaI enzymes that undergo degradation in response to protons in lysosomes. Then, Hhal enzymes identify

the cleavage site and cut it off, leading to release of Cas9/sgRNA and DNAzyme for affecting gene expression for

the purpose of breast cancer therapy.129 Another experiment has developed core‐shell nanoparticles for delivery of

dual plasmids (pHR‐pCas9) in breast cancer treatment. The nanostructures had a particle size of 140 nm and a zeta
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potential of 26.4 mV. These nanoparticles promote cellular uptake of Cas9 mediated by γGTP and provide

endosomal escape, resulting in accurate expression of CTCF gene. After CTCF upregulation, a significant decrease

occurs in expression of STOM protein, which is vital for suppressing the proliferation (colonization) and metastasis

of breast tumor cells (Figure 4).129

3.3 | Noncoding RNAs

A large section of the genome is comprised of ncRNAs that do not translate any proteins. Although their function

was under shadow after their discovery, more advances in biology revealed the role of ncRNAs in evolutionary

mechanisms and biological functions in cells. MicroRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular

RNAs (circRNAs) are the most well‐known categories of ncRNAs that show abnormal expression in various tumors,

especially breast cancer. Apoptosis, proliferation rate, metastasis and therapy response are tightly regulated by

ncRNAs in breast cancer, and therefore, modulation of their expression is of importance in breast cancer

therapy130–134 that can be boosted by nanostructures.

F IGURE 3 (A, B) Development of nanocarriers and their internalization in tumor cells, (C) Infrared thermal
images, (D) Collected tumors, (E) Tumor volume, (F) Tumor weight, (G) Histopathological analysis and (H)
Bodyweight. Reprinted with permission from119 Elsevier. [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 4 (See caption on next page)
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A recent experiment has prepared layer‐by‐layer nanostructures for miRNA delivery in breast cancer

suppression. The spherical core of nanoparticles was prepared by poly(lactic‐co‐glycolic acid), and it was

surrounded by different layers of poly‐L‐lysine (PLL) and miRNA‐34a. The breast tumor cells demonstrate high

cellular uptake of layer‐by‐layer nanoparticles compared to polyplexes containing PLL and miRNA. A

significant amount of miRNA‐34a was delivered to cytosol, which then decreased expression of CCND‐1,

Notch‐1, Bcl‐2, survivin and MDR‐1, leading to growth suppression and cell cycle arrest.135 Another study

designed silica dioxide nanoparticles for miRNA‐34a delivery in breast cancer suppression. The miRNA‐34a

was effectively delivered to both normal and tumor cells in vitro without adverse impacts. The miRNA‐34a‐

loaded silica dioxide nanoparticles suppressed breast cancer growth in vitro and in vivo.136 Therefore,

nanoparticles are promising candidates for miRNA delivery in breast tumor therapy, and their efficacy in gene

silencing and tumor progression suppression can be elevated by nanostructures.137 The miRNA‐loaded

nanoparticles are also beneficial in preventing drug resistance. The polymeric nanoparticles were prepared

using chitosan and hyaluronic acid, and then miRNA‐34a and doxorubicin were loaded. The nanoparticles

demonstrated a particle size of 214 nm, a zeta potential of −33 mV and encapsulation efficiencies of 48.3%

and 91% for DOX and miRNA‐34a, respectively. The released miRNA‐34a inhibited breast cancer progression

via Notch‐1 downregulation, and then, potential of DOX in apoptosis induction was enhanced via Bcl‐2

inhibition. Furthermore, this combination therapy and delivery by nanoparticles prevented drug resistance in

breast cancer.138 Another study also prepared PEI‐PLGA nanostructures for DOX and miRNA‐542‐3p

codelivery and surface modification with HA promoted selectivity of nanoparticles towards CD44‐

overexpressed breast tumor cells. They had a particle size of 131.7 nm and a zeta potential of −7.8 mV.

These HA‐modified PEI‐PLGA nanostructures delivered miRNA‐542‐3p to mediate survivin downregulation

and p53 upregulation in apoptosis induction, leading to a significant increase in DOX sensitivity.139 In addition

to miRNA delivery by nanoparticles in breast cancer therapy,140 circRNA delivery has been conducted. The

circRNA‐0001073 demonstrates downregulation in breast cancer, and it is associated with an undesirable

prognosis. Upregulation of circRNA‐0001073 stimulates apoptosis via caspase‐3/9 overexpression and

suppresses growth rate. Furthermore, circRNA‐0001073 inhibits the metastasis of breast tumor cells via EMT

inhibition. The circRNA‐loaded nanoparticles and their intratumoral injection could suppress tumor growth in

animal models.141 Notably, lncRNAs also demonstrate aberrant expression in breast tumor, and their

expression can be regulated by siRNA‐loaded nanoparticles (Table 3).151,152 The delivery of siRNA by

nanoparticles was discussed in previous sections.

4 | DRUG AND GENE CODELIVERY

Nanostructures have capacity to provide a platform for codelivery of drugs and genes in breast cancer therapy. The

gene therapy can promote sensitivity of breast cancer cells to chemotherapy. The overexpression of STAT3 and its

nuclear translocation can lead to reduced sensitivity of breast cancer cells to PTX chemotherapy. The polymeric micelles

from PCL were prepared, and then PTX was loaded into nanostructures via hydrophobic interaction. At the next step,

siRNA‐STAT3 was condensed into PEI via electrostatic interaction. The surface modification of micelles with HA

changed the surface charge into a negative one. These HA‐modified micelles selectively targeted CD44‐overexpressed

F IGURE 4 (A) Time‐dependent cellular uptake, (B) γGTP‐mediated cellular uptake, (C) γGTP‐mediated
cellular uptake, (D, E) Endosomal escape capability, Quantification of Gal8‐GFP spots and (F) Illustration for
γGTP‐mediated cellular uptake and endosomal escape of targeted core‐shell NPs carrying pHR‐pCas9.
Reprinted with permission from129 Elsevier. [Color figure can be viewed at wileyonlinelibrary.com]
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breast cancer cells, and their internalization in endo/lysosomes led to degradation of HA by hyaluronidase. This

combination suppressed the proliferation and invasion of breast tumor cells.153 Another study developed PEI/TPGS

nanostructures for codelivery of PTX and Twist‐shRNA to impair the progression of breast cancer cells. These

nanostructures significantly enhanced cellular uptake of shRNA and PTX and suppressed metastasis of breast tumor

cells up to 91%. The blood circulation time of PTX and shRNA elevates by nanoparticles and promoted accumulation in

lung and cancer site. The growth rate of breast tumor decreased, and their metastasis was inhibited.154 Therefore,

codelivery of PTX and genetic tools such as siRNA and shRNA are beneficial in impairing breast cancer progression.155

A similar strategy has been utilized for codelivery of DOX and genetic tools. The PEI‐modified silk fibroin

nanostructures were prepared for codelivery of DOX and siRNA‐survivin. The nanostructures had a particle size of

207.6 nm and a zeta potential of 30.45mV. The nanoparticles provided endosomal escape of DOX and siRNA, and

promoted their accumulation in cytoplasm of breast tumor cells. These siRNA‐ and DOX‐loaded nanoparticles

decreased the expression level of survivin at mRNA level. The nanoparticles preferentially accumulated at tumor

site, stimulated apoptosis and reduced breast tumor progression.156 The biological part should be focused on

targeting important factors involved in drug resistance. For instance, GCN5 is a regulator of P‐gp in cancer. The pH‐

and redox‐sensitive nanostructures for codelivery of DOX and siRNA‐GCN5 have been successful for reducing

GCN5 expression, impairing function of P‐gp, promoting internalization of DOX in breast tumor cells and interfering

with their progression.116 These studies highlight the fact that codelivery of synthetic molecules and genetic tools

can effectively suppress breast cancer progression.157–160

It is also worth mentioning that codelivery of genetic tools and phytochemicals in synergistic breast cancer therapy

is followed. An experiment developed hybrid lipid nanoparticles for codelivery of IGF‐1R and lycopene in breast cancer

therapy. These nanoparticles induced apoptosis and cell cycle arrest to impair breast cancer progression.161 Another

study has designed liposomes for codelivery of siRNA‐P‐gp and gedunin in breast cancer. The drug‐loaded liposomal

nanocarriers had a particle size of 97 nm, a zeta potential of +42mV and an encapsulation efficiency as high as 80%.

These nanoparticles suppressed proliferation of breast cancer cells and impaired stem cells. Furthermore, they

decreased expression levels of ABCB1, cyclin D1, Bax, p53 and survivin to impair breast tumor progression.162

5 | STIMULI‐RESPONSIVE NANOCARRIERS

Stimuli‐responsive drug delivery systems have evolved gradually in the past two decades after the development of

passive and active delivery systems. The nanomaterials, which are designed to passively penetrate through the

tumor environment, rely on enhanced permeation and retention, and their physical properties are a decisive factor

in the efficacy of these systems.163 Although their bioavailability and biocompatibility have improved compared to

free chemotherapeutic drugs, their accumulation throughout the tumor is still not desirable. One step further was

designing ctivee targeting drug delivery systems, which are being widely used in cancer therapy. Regarding to

binding of some specific ligands on the surface of these systems, they can actively attach to the targeted receptor,

followed by endocytosis and inducing the therapeutic effects.164 Under the umbrella of active targeting, there is a

category called stimuli‐sensitive or smart delivery systems. These materials are able to change their

physicochemical properties in response to a specific stimulator and/or microenvironment. Based on the type of

stimulation, they are divided into internal (redox, pH, enzyme, etc.) and external (light, magnetic field, ultrasound,

etc.) stimuli delivery systems (Table 4).176

5.1 | pH responsive

The tumor environment is known to have an acidic pH ranging from 5.4 to 6.5, whereas the healthy tissue

possesses a pH of 7.4. The high amounts of glycolysis are the reason why the tumor tissue has this character.
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Moreover, the pH is even more acidic at subcellular levels; the pH of endosome and lysosome is in the range of

4.5−5.5, and so after being endocytosed, the nanocarrier has an opportunity to release its cargo at these

organelles.177 Various acid‐responsive chemical groups have been used, among which phosphoric acid, amines,

acid‐labile bonds, carboxylic acid groups, and so forth. can be enumerated. In the case of breast cancer, different

types of pH‐sensitive carriers with various compositions have been designed.166,172,174,175 Polymeric nanocarriers

are at the epicenter of designing pH‐responsive systems for breast cancer therapy. One of most well‐known

compositions is pH‐responsive liposomes. Based on a phosphoethanolamine lipid, a liposome carrier modified with

an acid‐responsive group (cholesteryl hemisuccinate) was developed; the carrier was endowed with fusogenic

properties upon exposure to a mild acid environment, resulting in the carrier's disruption and drug release.178

Polymeric micelles are of particular interest because of their easy‐to‐tailor structure.179,180 Paclitaxel drug

molecules were entrapped in an acid‐labile, bone‐modified, PEGylated micellar system. Thanks to PEG, the

dispersion of micelles was excellent, and the drug molecules were liberated in the cancer cells (MDA‐MB‐231) due

to disassembly of the micelles in an acidic medium.181 Elsewhere, a dual‐pH‐responsive micelle was reported as a

carrier for paclitaxel. The micelles had a core‐shell structure in which there is a pH‐responsive center coated with an

acid‐cleavable shell, leading to a significant increase in the 4T1 tumor accumulation and inducing a stronger

cytotoxicity towards cancerous cells compared to free drug. It was revealed that the carrier was successful in

inhibiting the tumor growth and metastasis.182 Another approach through micellar systems is to take the advantage

of using two drugs simultaneously. For this purpose, poly(2‐ethyl‐2‐oxazoline)‐poly(D,L‐lactide) micelles were

loaded with paclitaxel and honokiol for combinational therapy, and the results implied that the synergistic effect of

both drugs caused a potent effect against tumor metastasis in vitro and in vivo.183 A programed targeting micellar

system, which has been functionalized with legumain‐specific melittin, was synthesized for breast cancer

metastasis. Cabazitaxel, a well‐known anticancer drug that is a strong microtubular inhibitor, was entrapped inside

the micelles. Due to high expression of legumain in the tumor microenvironment, the micelles could specifically

penetrate throughout the tumors and accumulate there, followed by being activated inside the cancer cells in

response to a change in pH. The in vivo studies revealed the successful delivery of micelles into the primary and

metastatic tumors, a significant decrease in the tumor's size, and a notable suppression of lung metastasis

(Figure 5).167

There are other pH‐sensitive polymeric systems reported for breast cancer therapy. A polymeric system loaded

with doxorubicin composed of poly(L‐histidine)‐poly(lactidecoglycolide)‐tocopheryl polyethylene glycol (PEG)

succinate was developed and tested against MCF‐7 breast cancer cells. It was found that at subcellular level, the

nanoparticles were accumulated through lysosome and released the cargo in response to the acidic medium, and

they performed significantly better and caused higher cytotoxicity than free doxorubicin.184 A ternary polymeric

system comprised of starch, polysorbate 80, and polymethacrylic acid was formulated and then loaded with

doxorubicin against breast cancer.185 pH‐responsivity of dendric polymers was tested at pH 5, and the release rate

was observed to increase at this pH resulted due to cleavage of hydrazone bonds. Moreover, the in vivo results

complemented the in vitro results and indicated antitumor activity of the dendric polymer against 4T1 breast tumor

model while leaving no toxicity effects behind in vivo.186 Besides polymeric matrices, pH‐responsive inorganic

nanomaterials are being extensively used in breast cancer therapy, including iron oxide, mesoporous and hollow

silica, and so forth.187–189 Through the adoption of a cleavable hydrazine bond, PEGylated polydopamine has been

coated over doxorubicin‐loaded hollow silica and tested against a xenograft model, resulting in the inhibition of

breast tumor growth.190 Amine‐functionalized mesoporous silica was synthesized as a dual‐responsive platform—

pH and photodynamic therapy (PDT). The functionalization led to an improvement in the cellular uptake and

induced cytotoxicity against MCF‐7 cells.191 The combination of chemotherapy and PDT was designed by using

doxorubicin and a photosensitizer in a calcium carbonate carrier to increase the antitumor efficacy of platform. The

nanoparticles exhibited a good stability at the physiological pH while effectively releasing the drug molecules when

the pH decreased.192
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F IGURE 5 (See caption on next page)
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5.2 | Redox responsive

The design of redox‐responsive nanocarriers for anticancer purposes is based on using disulfide linkages, which

can be as a cross‐linker or in the main or side chain.193 The general mechanism is the release of the anticancer

drug molecules once they are endocytosed in the exposure of glutathione; it is known that the tumor tissues

were observed to have significantly higher amounts of glutathione in their cytosol than healthy tissues.194 An

active‐targeting, redox‐responsive micellar nanocarrier was developed for the delivery of paclitaxel; the

micelle's composition was based on hyaluronic acid and deoxycholic acid, which has been conjugated with

cystamine. The drug release rate was found to be faster when the drug‐loaded carrier had been dispersed in the

glutathione‐containing solution (20 mM). The cytotoxicity potential of micelles against MDA‐MB‐231 cell line

was compared with Taxol, and the potency was competitively higher. The distribution of micelles was

significantly enhanced in the tumor site compared with the liver and healthy tissues.195 This group conducted

another study in which they shed light on the type of internalization of these stimuli‐responsive carriers. They

found that the rapid and efficient endocytosis of the carriers occurs through CD44 receptor‐mediated

endocytosis.196 A hierarchical ternary nanoparticulate system comprised of PEG‐hyaluronic acid and stearic

acid, which had been conjugated through a disulfide bond, was synthesized. The loaded paclitaxel inside was

found to release faster in the presence of oxidative and reductive media with an acidic pH. Thanks to PEG, the

carrier's circulation time in the blood stream was prolonged, followed by being accumulated in the tumor

environment and subsequently internalized by MDA‐MB‐231 cells through CD44‐mediated endocytosis

(Figure 6).174

Loading more than one anticancer drug/gene into a carrier is advantageous because the cell proliferation

inhibition takes place in a more efficacious way.138 To come up with a more potent breast cancer treatment,

siRNA and paclitaxel were codelivered through a hyaluronic‐based redox‐responsive nanocarrier. In the

presence of glutathione, the liberation rates of both siRNA and paclitaxel were increased, and both therapeutic

agents were successfully delivered to MDA‐MB‐231 cells, followed by imparting an antitumor activity much

more potent than that of nonresponsive carriers.197 To circumvent the multidrug resistance of breast cancer

cells, mesoporous silica was used as a potent carrier to load both siRNA (P‐glycoprotein modulator) and

doxorubicin against MCF‐7/ADR cancer cells.198 A lot of effort has been made to improve the antitumor

activity of nanocarriers, and one of these methods is to equip a stimuli‐responsive carrier with some specific

signaling molecules that can in particular recognize breast cancer cells.199 To achieve this, a research group

reported the design of a folate‐conjugated carrier that was also pH and redox‐responsive. The dual

responsiveness led to a faster release in the presence of both stimuli—glutathione and acidic medium. Two

control groups, including free doxorubicin and non‐folate‐modified drug‐loaded carriers were simultaneously

tested, and the folate‐modified carrier indicated better tumor growth inhibition than the others.200 Antibody‐

conjugated (anti‐Trop2) redox‐responsive nanoparticles were developed and the in vitro results exhibited that

the doxorubicin release rate got faster in the presence of stimulus besides better uptake into MDA‐MB‐231

cells because of the antibody.201

F IGURE 5 A pH‐responsive micellar system targeting primary and metastasis breast cancer. (A) A schematic on
the preparation of TCM‐legM system and how it acts against the cancer cells; it first actively accumulates in the
tumor microenvironment due to the high expression of legumain and internalized into the cells and release the
cargo due to the change in the acidity of the medium. (B) The relative tumor volume after being treated with
different samples up to 25 days. (C) The relative tumor weight (%) after treatment with different samples at the end
treatment time (*p < 0.05). (D) The histological analysis made on the different parts of lung through H&E staining;
the yellow arrows point at the metastatic lesions. Reprinted from167 with permission fromWiley. [Color figure can
be viewed at wileyonlinelibrary.com]
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5.3 | Enzyme responsive

Until now, multiple types of nanostructures have been used in cancer treatment, such as the development of polymeric

lipid prodrug cocktails and self‐assembled DHA–cabazitaxel conjugates to suppress progression even in drug‐resistant

tumors.202,203 The main reason for using nanostructures in cancer therapy is to improve the cellular uptake of drugs,204

and to increase this ability in cancer cell internalization, nanocarriers are modified with macrophage membrane.205 In

recent years, enzyme‐responsive nanomaterials have piqued the interest of cancer researchers. Due to dysregulation of

enzyme activity in the tumor microenvironment, designing smart nanocarriers in a way that is sensitive to the function of

enzymes, can also lead to site‐specific release of drug at the tumor site.206

One of the main challenges in the effective treatment of breast cancer is metastasis, in which degradation of

tumor extracellular matrix takes place.207 The main degradative agents are proteolytic enzymes, which are

abundant in cancer cells. Therefore, through the adoption of short peptides and/or esters, the carrier would

undergo cleavage in the presence of proteases or esterases.208 A multicompartment carrier composed of docetaxel‐

loaded micelles was developed for breast cancer therapy and then incorporated inside of an enzyme‐sensitive

liposome. The anticancer potential of nanocarrier was tested against 4T1 cells in the presence of matrix

metalloproteinase, and a better cellular uptake and faster liberation of docetaxel were obtained. The efficacy of

drug‐loaded carrier was also tested in vivo in comparison to Taxotere®, and a significantly greater tumor growth

inhibition was achieved.209 Paclitaxel was incorporated into an enzyme‐sensitive beta‐cyclodextrin carrier and

tested against breast cancer in vivo (MDA‐MB‐231). The control group with which the carrier was compared had

been treated with Taxol®, and the tumor volume after being treated with the carrier and Taxol was 50 and

3500mm3, respectively. It can be seen that the enzyme‐responsive carrier caused the tumor to almost

disappear.210 A polymersome‐based drug delivery system modified with iRGD peptide was fabricated; the peptide

was responsible for making an interaction with the neuropilin‐1 and integrin receptors located on the cancer cells'

surface. It is well known that neuropilin‐1 is expressed on breast cancer cells. Tracking the internalization of

samples revealed that only the polymersomes modified with the peptide could enter the cell after three hours, and

F IGURE 6 A redox‐responsive ternary carrier for active breast cancer therapy. (A) Schematic on the preparation
of paclitaxel‐loaded ternary nanoparticulate system followed by being internalized through CD44‐mediated
endocytosis. (B, C) The cumulative release of PTX‐PHCS and PTX‐PHSS samples at different conditions. (C) Tumor
volume after being treated with different samples; the black arrows show the administration times. (D) The excised
tumors at the end of treatment time after applying treatment with different samples. hyaluronic acid (HA), stearic
acid (SA), poly(ethylene glycol) diamine (PEG‐dia), paclitaxel (PTX), pH‐stimulated hyaluronidase (pSH), HA‐SA
containing disulfide linkages (PHSS) while with carbon bonds (HCS). Reprinted from174 with permission from ACS.
[Color figure can be viewed at wileyonlinelibrary.com]
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the induced toxicity by the modified samples was 76% while the nonmodified ones had no effect.211 An enzyme‐

responsive micellar platform consisting of a hydrophilic PEG and a hydrophobic dendron was designed and loaded

with Nile red dye. Although the results implied that in the presence of penicillin G amidase, the release of dye got

faster, more in vitro and in vivo studies are required to assess the carrier's true potential in breast cancer.212 To

target and reverse multidrug resistance, a paclitaxel‐loaded micellar platform was proposed to release the

encapsulated drug molecules faster in the presence of collagenases IV, and as a result, the mechanism of drug efflux

was inhibited.212 Diagnostic stimuli‐responsive nanocarriers are of particular interest in cancer therapy because

they make treatment tracking possible besides imaging. Having an imaging agent inside the nanocarrier provides an

opportunity to observe if the nanoparticles have accumulated in the tumor's site and to what extent the therapeutic

material is efficacious.213 A diagnostic enzyme‐responsive hybrid nanomaterial was designed to encapsulate

doxorubicin and is being used for theranostic applications. Through adopting a confocal microscopy assay and

making a comparison with free doxorubicin, it was observed that the hybrid nanomaterial selectively penetrated

into the cancerous cells and more internalization had occurred than with free doxorubicin.214

6 | EXTERNAL‐STIMULI RESPONSIVE

External stimuli‐responsive relates to those carriers that can be controlled by an agent or agents outside of the

body; these agents are capable of affecting the drug release behavior, steering the carrier to a targeted site,

introducing an extra therapeutic way, etc. Various types of external stimuli systems have been reported for cancer

therapy, including light, magnetic field, ultrasound, and so forth.215–217 One of the most common external stimuli

for purpose of cancer therapy is the development of nanostructures that can be sensitive to NIR light, and this

results in immunogenic cell death that is of importance for purpose of immunotherapy and future insights towards

development of cancer vaccines.218 In this section, some of those techniques that have been applied more in breast

cancer therapy are summarized.

6.1 | Photothermal and PDT

Photothermal therapy (PTT) is a localized treatment for various kinds of solid cancers present in different regions of

the body. Infrared and electromagnetic radiation are employed during PTT to excite a photosensitizer.219,220 During

PTT, the photosensitizer absorbs light or energy, which is then converted to heat to mediate hyperthermia and

provide tumor ablation.221 PDT uses oxygen to interrelate with targeted cells and tissues. During PDT, an increase

in levels of ROS occurs to mediate oxidative stress and cell death. Less energy and a longer wavelength are used for

PTT compared to PDT, making it more safe for the purpose of cancer therapy and reducing adverse impacts on

normal cells and tissues.222 Various experiments have used nanostructures for PTT and PDT to suppress breast

cancer progression. A recent experiment has developed injectable hydrogels for PTT in breast tumor. The Pluronic

F127 hydrogels were coated with titanium carbide (Ti3C2). The nanoparticles showed high stability at low

temperatures for at least 2 weeks. The hydrogels demonstrated a loosely meshed structure, and Ti3C2

nanoarchitectures had a shuttle‐shaped structure. Interestingly, hydrogels did not influence photothermal activity

of nanoparticles, and in turn, no negative impact on temperature sensitivity of hydrogels was observed. Exposure of

these nanoarchitecture‐coated hydrogels to 808 nm NIR laser led to PTT effect, enhancing temperature up to

40−50°C and suppressed tumor growth in vitro and in vivo.223 Noteworthy, PTT can be helpful in preventing breast

tumor recurrence after surgery. In this way, an experiment has developed a thermosensitive and injectable hydrogel

containing porous microspheres and IR820 that induces hyperthermia (more than 50°C) upon exposure to NIR

irradiation and eliminates breast tumor cells in vitro. Besides, this hydrogel prevents breast tumor recurrence after

surgery in vivo and inhibits migration and invasion (Figure 7).224 Furthermore, a photosensitizer and chemotherapy
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drug can be wrapped and assembled into nanostructures to increase ROS generation for PDT and mediate

chemotherapy and PDT of cancer cells.225

One of the mechanisms applied in treatment of breast cancer is ferroptosis, which is based on Fenton reaction.

However, efficacy of ferroptosis in breast tumor suppression is limited due to interactions occurring in TME that

reduce its efficacy. A recent experiment has developed a novel strategy for Fenton‐independent ferroptosis for

breast tumor ablation. This study designed iron redox pair (Fe2+/Fe3+)‐containing hollow mesoporous Prussian blue

F IGURE 7 (A) The hydrogel platform and its application for preventing tumor recurrence, (B) The dynamic
photothermal images, (C) temperature–time profile, (D) Tumor volume, (E) Bodyweight, and (F) Excised tumors.
Reprinted with permission from224 BMC. [Color figure can be viewed at wileyonlinelibrary.com]
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(HMPB) nanocubes for providing iron source and then developed iron‐loaded liposomes (HMPB@Lip). The resulting

nanocarriers induced ferroptosis in breast tumor via catalyzing lipid peroxidation, providing PTT for cancer

ablation.131 Notably, PTT can significantly enhance potential of chemotherapy in breast tumor ablation while having

high biocompatibility and safety profile.226 In this way, an experiment has developed hybrid mesoporous silica

nanoparticles for delivery of disulfiram and PTT. The anticancer drug was loaded inside the mesoporous and hollow

interior, while CuS ultrasmall nanostructures were loaded on surface of nanoparticles. Exposure to NIR irradiation

mediated PTT and after Cu2+ release into TME, disulfiram, a nontoxic agent, was changed into diethyldithiocarba-

mate (DTC)‐copper complex as a toxic agent to suppress breast tumor progression. This combination of

chemotherapy and PTT can improve breast tumor treatment (Figure 8).133 Another target for effective treatment of

breast tumor is cancer stem cells (CSCs), which are responsible for metabolism, renewal of tumor population and

cancer recurrence.227 A recent experiment has developed dendritic polyglycerol‐conjugated gold nanostars in

breast cancer therapy. In the structure of nanocomposite, triphenyl phosphonium (TPP) was used as a mitochondrial

F IGURE 8 (A, B) Preparation of nanoparticles and their Anticancer activity, (C) Bodyweight, (D) Body
distribution of Cu in the major organs (heart, liver, spleen, lung, and kidney) and tumor after administration of HCu
for varied time durations (2, 6, 12, and 24 h), (E) Temperature elevation in tumor site, (F) Corresponding heating
curve, (G) Bodyweight changes of 4T1 tumor‐bearing mice with different treatment. Reprinted with permission
from133 from BMC. [Color figure can be viewed at wileyonlinelibrary.com]
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targeting agent, 3‐bromopyruvate (3BP) as hexokinase‐2 (HK2) inhibitor and hyaluronic acid (HA) as a specific agent

for targeting CSCs. The nanocomposites demonstrated high biocompatibility, and after NIR irradiation, they

induced apoptotic cell death via providing PTT. Furthermore, they suppressed glycolysis in CSCs via HK2

downregulation, and HA helped in specific targeting of CSCs overexpressing CD44 receptor.228

Noteworthy, experiments have also focused on PDT for breast tumor ablation. In an effort, polymeric

nanoparticles composed of mPEG and poly(asparagyl diisopropylethylenediamine‐co‐phenylalanine) (P(Asp(DIP)‐

co‐Phe)) have been developed for pH‐sensitive delivery. The polymeric nanoparticles self‐assembled into

nanovesicles and were utilized for encapsulation of tirapazamine and dihydrogen porphin (chlorin e6) as a

photosensitizer. Exposure to NIR irradiation mediates PDT to induce hypoxia in TME. Then, activation of

tirpazamine as a prodrug occurs to induce chemotherapy and breast tumor ablation.229 In addition to

chemotherapy, PDT can also help boost breast cancer immunotherapy. A recent experiment has developed

manganese dioxide (MnO2)‐loaded liposomes labeled with LyP‐1 peptide for breast tumor ablation. Zoledronic acid

(Zol) was loaded in hydrophilic cavity of liposomes, while IR780 as photosensitizer was embedded in lipid bilayer. In

response to H2O2 in TME, MnO2 in structures of liposomes generated O2 bubbles. Then, liposome membrane

degradation occurred to release Zol, increasing O2 generation and mediating PDT. Notably, phagocytosis of Zol by

macrophages occurs, which subsequently induces cell death in macrophages or changes their polarization from M2

to M1 to prevent immunosuppression. Besides, surface modification with LyP‐1 peptide provides targeted delivery

to breast tumor cells, and IR780 enhances ROS generation upon NIR irradiation for PDT and mild immune

induction.230 These studies highlight the fact that both PDT and PTT are beneficial for breast tumor ablation, but

PTT is generally preferred to PDT due to its safety profile. Both PDT and PTT can enhance cytotoxicity of

chemotherapeutic agents and are beneficial in preventing drug resistance development. Furthermore, PDT and PTT

can induce antitumor immunity that is suppressed in breast cancer (Table 5).232,239,241–251

Magnetic field is known to penetrate throughout the tissues and is generally used for imaging. Moreover, the

magnetic field has been shown to have therapeutic effects, including affecting drug release behavior, steering

magnetic‐responsive particles to the intended target, and inducing hyperthermia.252 Through altering the magnetic

field intensity and applied frequency, it has been reported that controlling the produced heat is possible.253 Iron

oxide is one of the most reputable magnetic‐responsive materials in medicine because of its high magnetization

saturation and superparamagnetic property.254 In combination with curcumin, iron oxide coated with pluronic F68

has been applied to breast cancer therapy. The anticancer potential of drug‐loaded iron oxide and free curcumin

was tested in vitro in the exposure of MDA‐MB‐231 cells with and without applying an external magnetic field. It

was observed that a burst release (about 50%) occurred in the first 5 days of treatment, followed by a sustained

release up to 28 days. The combination of iron oxide and curcumin reduced cell viability from 100% to 38%.255

Chitosan‐coated iron oxide was reported somewhere else for breast cancer therapy. Gemcitabine was used as the

drug model, and MCF‐7 and SKBR‐3 were used for in vitro studies. Applying an external magnetic field led to

accumulation of superparamagnetic nanoparticles in the intended location, and the IC50 of drug‐loaded chitosan‐

modified iron oxide was seen to be significantly lower than free gemcitabine, showing the effectiveness of carrier

against both breast cancer cell lines.256 A magnetic nanosystem was formulated based on loading of artemisinin

onto the chitosan‐modified magnetic nanoparticles. The release trend of artemisinin was tested in vitro with three

formulations and revealed a release range of 62‐78%. Through in vivo models (4T1‐breast tumor‐bearing mice),

the targeting ability of drug‐loaded carriers was determined. The applied external magnetic field (1000 gauss) at the

first hour resulted in the accumulation of nanoparticles in the cancer tissue rather than healthy ones.257 One of the

problems revolving around magnetic nanoparticles is undesirable aggregation due to dipole‐dipole interactions

between the nanoparticles. An effective solution to this problem is introducing a polymer coating over those

nanoparticles.258 Doxorubicin‐loaded PEG‐dicarboxylic acid‐coated iron oxide was developed for breast cancer

therapy. The surface modification culminated in the better colloidal stability of magnetic nanoparticles. The in vitro

studies performed on the MCF‐7 cells exhibited that the applied magnetism improved the nanoparticles'

internalization into the cells.259 The heat generation capability of chitosan‐coated magnetic nanoparticles, besides
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doxorubicin release, was studied. Without applying the magnetic field, doxorubicin alone decreased the cell viability

of cancer cells down to 30% %, whereas the drug‐loaded carrier caused 40% cytotoxicity. Once the magnetic field

was applied for 10min, it was found that in the first 5 min, nearly 65% of cells were killed, and prolonging the

procedure up to 10min even killed 90% showing the high efficacy of hyperthermia treatment.260 Along with

hyperthermia treatment, some studies have added functionalized agents to the magnetic nanoparticles to

selectively target specific receptors. A core‐shell magnetic compound was designed, followed by encapsulation of

camptothecin and conjugation of an EGFR antibody. The internalization of antibody‐modified carrier was improved

through treatment with MCF‐7 cells. Up to 1 h, the drug release was around 18%, while in the presence of a

magnetic field for 2 min, this value increased up to 40%.261 Monoclonal antibody‐modified magnetic nanoparticles

were synthesized for doxorubicin delivery. The in vitro studies were performed on the HER2‐positive SKBR3 cells,

and as it was expected, the functionalization led to an enhancement in the internalization of nanoparticles and

exhibited a sustained drug release inside the cells.262 Besides spinel ferrite magnetic nanoparticles, there is another

magnetic material with high potential in cancer therapy called liquid metals, which have a low melting temperature

near or at room or body temperature, and this property endows this category with both fluidic and metallic

properties.263 Gallium‐based eutectic alloys have sparked considerable attention in biomedicine with their desirable

chemical stability, biocompatibility, environmental friendliness, etc. These alloys are reported to have melting points

in the range of 10−30°C. A recent study combined doxorubicin‐loaded mesoporous silica with PEGylated liquid

metal to achieve a hybrid platform. In comparison with magnetic nanoparticles, it was observed that even a tiny

drop of injectable liquid metal was enough to induce high temperatures inside the tumors into which it had been

incorporated. Interestingly, through the use of polarizing microscopy, it was possible to observe the effect of a heat

increase on the recrystallization of coated PEG all over the metal ions. The release of doxorubicin along with

the hyperthermia provided a thermo‐chemotherapy package for breast cancer therapy (Figure 9).264 Some of the

magnetic‐responsive nanoparticles for breast cancer therapy are tabulated in Table 6.

F IGURE 9 The nanomaterials for purpose of PTT and PDT in breast tumor therapy. PDT, photodynamic
therapy; PTT, Photothermal therapy. [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 6 Magnetic‐responsive nanomaterials for breast cancer therapy.

Nano‐vehicle Cargo Application Remarks References

Herceptin ligand‐
modified

Tamoxifen Drug delivery The carrier was found with super‐
paramagnetic properties which
reached the targeted tissue and
induced toxicity to breast cancer

cells.

Fe3O4@PLGA–PVP

Fe3O4/SiO2‐graphene
oxide
quantom dots

Doxorubicin Drug delivery‐
hyperthermia

The temperature increase led to an
increase in the drug release

[265]

The efficient cellular uptake of the
carrier occurred through breast

cancer 4T1 cells

Combination of hyperthermia and
chemotherapy together led to a
higher efficacy in eradication of
cancer cells

PEG‐Chitosan‐Fe3O4

hydrogel
Doxorubicin Drug delivery‐

hyperthermia
Magnetic hyperthermia improved

doxorubicin internalization and
reduced the size of tumors.

[266]

Fe3O4‐coated with
calcium phosphate‐
PEG‐polyanion
block copolymers

siRNA Gene delivery The siRNA‐loaded carrier was found
to be directed to the targeted
tissue by magnetic field followed
by releasing the gene.

[267]

Progesterone‐modified
casein‐calcium
ferrite

soy‐derived
genistein

Drug delivery‐
hyperthermia

A high drug encapsulation of 88% %
was obtained.

[268]

Under applying an external magnetic
field, the drug release reached
93% % in 4 h and the
temperature raised up to 41 ̊C.

Magnetic hydrogel
nanozyme

‐ Hyperthermia The hyperthermia activated the
enzymatic activity of iron oxide
to generate hydroxide ions

which simultaneously reinforce
the efficacy of hyperthermia
treatment.

[176]

PEG‐based hyper

saline hydrogel

Doxorubicin Hyperthermia Increasing in the local temperature

rapidly once being exposed to an
external magnetic field.

[269]

In vivo observations showed that
the hydrogel could suppress two
kinds of breast cancer models.

Functionalized
MnFe2O4/Fe3O4

‐ Hyperthermia‐
imaging

The nanoparticles have been
functionalized with a peptide
culminating in a better
accumulation in the tumor and

more effective ablation of the
tissue through magnetic
hyperthermia.

[270]

(Continues)
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7 | IMMUNOTHERAPY

New hope has been opened in the treatment of hematological and solid tumors via immunotherapy, and in this

case, various strategies such as immune checkpoint inhibitors and adoptive cell therapy have been

introduced.272 Anticancer immunity depends on using T cells and improving prognosis of cancer patients.

The histopathological analysis reveals infiltration of inflammatory and lymphocytic cells in TME and their

function in affecting tumor growth.273 However, much impact has not been observed in breast cancer

immunotherapy. Therefore, interdisciplinary research using nanoparticles for boosting immunotherapy in

breast cancer has been suggested. An experiment has developed genetically edited nanostructures for breast

cancer immunotherapy. The attachment of SIRPα on macrophages to CD47 inhibits activity of macrophages in

phagocytosis of tumor cells. Besides, cancer cells have the capacity of secreting colony stimulating factors

(CSFs) and polarizing macrophages to M2 phenotype. The cell membrane‐coated magnetic nanostructures

suppress SIRPα and CD47 interaction to maintain activity of macrophages in breast cancer phagocytosis,

whereas magnetic core repolarizes M2 macrophages to M1 macrophages. These activities boost breast cancer

immunity and improve survival and prognosis of breast cancer.274 As it was mentioned, CSFs affect

polarization of macrophages, and by binding to CSF 1 receptor (CSF1‐R), mediate M2 polarization of

macrophages. An experiment has developed self‐assembled dual‐inhibitor‐loaded nanostructures for

suppressing CSF1R and SHP2 pathways to induce M1 polarization of macrophages for phagocytosis of

breast tumor cells and mediating cancer immunotherapy.275

Due to systemic toxicity after intravenous administration, it is preferred to use intratumoral administration for

breast cancer therapy. In an effort, platelet‐coated nanoparticles were loaded with resiquimod (R848) as a toll‐like

receptor agonist, and then they were administered via intratumoral route. The surface modification of nanoparticles

with platelets promotes interactions of nanocarriers withTME and significantly enhances activity of R848 in breast

cancer immunotherapy. Growth inhibition and the prevention of invasion of breast cancer cells to lung result from

the application of R848‐loaded platelet‐coated nanostructures.276 The coating of nanoparticles with immune and

cancer cells is a promising strategy in tumor immunotherapy. The modification of PLGA nanostructures with

macrophages and cancer cells was performed, and then metformin and siRNA‐FGL1 were loaded. The guanidine

group of metformin enabled the endo‐lysosomal escape of siRNA in cytoplasm via providing a pH‐triggered CO2‐

generating nanostructure. The release of metformin by nanostructures results in stimulation of AMP‐activated

protein kinase (AMPK) to mediate PD‐L1 degradation, resulting in PD‐L1 inhibition. Furthermore, downregulation

of FGL1 by siRNA induces a T cell response to promote antitumor immunity in suppressing breast cancer in vitro

and in vivo.277 Besides, to maximize anticancer activity, a combination of chemotherapy and immunotherapy is

performed. The polymeric nanoparticles were synthesized from poly(L‐histidine) (PHIS), and then PHIS was

conjugated to R848 in the core of nanostructures. Then, DOX was conjugated to HA via hydrazone bond linkage.

TABLE 6 (Continued)

Nano‐vehicle Cargo Application Remarks References

Gelatin‐based
magnetic hydrogel

Doxorubicin Drug delivery‐
hyperthermia

The hydrogels were found to have a
porous structure resulted in high
amounts of drug loading.

[271]

The combination of drug delivery

and hyperthermia was observed
to synergistically reduced the
anticancer activity of breast
cancer cells.
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These nanocarriers release DOX and R848 in response to pH due to cleavage of the hydrazone bond, and both

chemotherapy and immunotherapy exert a synergistic impact in suppressing breast cancer progression.278

Immunotherapy and phototherapy can be co‐utilized in synergistic breast cancer therapy. An effort has been

made to develop ovalbumin‐coated PEGylated MnFe2O4 nanoparticles for delivery of R837 as an immunoadjuvant.

These nanoparticles decreased production of cytokines by M2 macrophages to prevent immunosuppression. These

nanocarriers are also important for suppressing growth and lung metastasis of breast tumor cells in vitro and in

vivo.279 The TME remodeling by nanocarriers is a promising strategy for providing immunotherapy. The tumor‐

associated adipocytes in TME are responsible for secretion of CCL2 chemokine. Then, CCL2 recruits macrophages

and monocytes that can differentiate into M2 macrophages and immunosuppressive myeloid‐derived suppressor

cells (MDSCs). An experiment has synthesized lipid‐protamine nanostructures for delivery of plasmid trapping CCL2

to prevent its action in recruiting M2 macrophages and MDSCs, leading to immunotherapy and suppressing breast

cancer progression.280 The rhodamine B isothiocyanate (RITC) fluorescent MSNs were prepared and modified with

PEG and TA. Finally, MSNs were loaded with cyclic diguanylate monophosphate (c‐di‐GMP or cdG). These

nanostructures promoted secretion of IL‐6, IL‐1β, TNF‐β and enhanced STING expression. Furthermore, MSNs

significantly enhanced infiltration of immune cells such as leukocytes, dendritic cells (DCs), macrophages and CD4+

and CD8+ T cells in TME, reducing breast cancer progression.53 These studies highlight the fact that

nanoarchitectures can significantly enhance efficacy of immunotherapy in breast cancer suppression (Figure 10

and Table 7).295–298

Although most of the studies have focused on the regulation of macrophages in cancer immunotherapy, it is

worth mentioning that other immune cells can be regulated by nanostructures in breast cancer immunotherapy. Fe‐

loaded organosilica nanostructures have been employed for the purpose of breast cancer immunotherapy. The

modification of nanostructures was performed with hyaluronic acid was performed, and ICG was loaded in them.

The nanostructures were spherical in shape, and they released Fe3+ in a pH‐dependent manner by providing mild

F IGURE 10 Nanostructures for purpose of immunotherapy in breast cancer. [Color figure can be viewed at
wileyonlinelibrary.com]
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PTT, which induced cell death. One of the important results of using such nanostructures in breast cancer therapy is

that they can mediate mild PTT that is important for inducing maturation of DCs and elevating infiltration of CD8+

T cells at tumor microenvironment for the purpose of breast cancer immunotherapy.299 TheT cells and natural killer

(NK) cells mainly produce interferon‐gamma for the purpose of breast cancer immunotherapy. The mitochondria‐

targeted nanoparticles containing photosensitizers that are responsive to light can stimulate maturation of DC cells

for promoting generation and secretion of interferon‐gamma in breast cancer immunotherapy.300 It appears that

regulation of immune cells by nanoparticles can affect both the growth and metastasis of breast tumor cells.

Biomimetic nanostructures in combination with checkpoint blockade can stimulate CD4+, CD8+, and NK cells to

elevate levels of TNF‐α and IL‐12, leading to tumor growth inhibition of 84.2% and suppression of metastasis.301

When nanostructures increase infiltration of CD8+ T cells in TME,302 it can lead to increased immune surveillance

on breast tumor cells for the purpose of immunotherapy.303

8 | SURFACE MODIFICATION

The cell fate of nanoparticles is one of the most important aspects that has received much attention in recent years.

Based on the studies, nanostructures mainly use endocytosis for internalization in cancer cells.77 A recent

experiment has shown overexpression of CD44 receptor on surface of breast tumor cells, and consequently,

modification of nanoparticles with its ligand can provide receptor‐mediated endocytosis. However, the design of

the nanoparticle should be such that it mediates its endosomal escape; otherwise, it is degraded and undergoes

unexpected alterations in structure. In this way, PEG‐poly(β‐amino ester) (PEG‐PBAE) micelles were prepared, and

PBAE provided protonation to mediate endosomal escape of nanoparticles after internalization (endocytosis) by

breast tumor cells.304 Designing a good nanocarrier depends on the selection of various kinds of polymers and

agents that can enhance internalization, stability and endosomal escape of nanoparticles. A recent experiment

utilized gold nanoparticles for pDNA delivery in breast tumor suppression. The chitosan was employed to increase

stability of nanostructures; surface modification of gold nanostructures with folate to increase their internalization

via endocytosis; and finally, modification with histidine provided endosomal escape to enhance potential of these

nanocarriers for gene delivery. However, it should be noted that different modifications of nanomaterials with

polymers can increase their particle size. For instance, in a previous study, modification of gold nanoparticles with

histidine, folate and chitosan resulted in the preparation of nanostructures with a size of 135 nm and less, which

may pose a problem for their internalization in breast tumor cells.305 The advances in biology have resulted in

identification of novel receptors with overexpression in breast cancer. For instance, neuropilin‐1 (NRP‐1) shows

upregulation in breast tumor cells. The surface modification of polymeric nanostructures with iRGD results in its

interaction with NRP‐1 to mediate their cellular uptake via receptor‐mediated endocytosis and transcytosis.306

Another experiment examined internalization of transferrin (Tf)‐modified PLGA nanostructures in 4T1 and MDA‐

MB‐231 cells. These nanoparticles internalized into breast tumor cells via receptor‐mediated endocytosis.232 It is

worth mentioning that endocytosis is an energy‐dependent mechanism304 and that modification of nanoparticles

with ligands leads to receptor‐mediated endocytosis.307 Although surface modification of nanostructures is

important for their endocytosis in breast tumor cells,308 it should be noted that after the introduction of

nanomaterials to biological medium, proteins are absorbed into surface of nanoparticles and form a biomolecular

corona that can affect the fate of nanocarriers. However, studies related to protein corona are limited to in vitro,

and a few experiments have focused on impact of protein corona on fate of nanostructures in vivo, but it is still a

problem to reveal how protein corona can affect nanoparticle fate.309–314 In addition, other kinds of endocytosis,

including clathrin‐ and caveolae‐mediated endocytosis, are involved in nanoparticle internalization. A recent

experiment has shown that DOX‐loaded sufactin‐based nanostructures can internalize into MCF‐7 cells via

caveolin‐mediated endocytosis and macropinocytosis.315 Furthermore, PEGylated self‐assembled nanoarchitecture

internalizes into breast tumor cells via clathrin‐mediated endocytosis.316 Therefore, nanostructures mainly use
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endocytosis for entering breast tumor cells (Figure 11).322–325 Table 8 provides a summary of nanoparticle

internalization in breast tumor cells.

9 | CONCLUSION AND REMARKS

The present review focused on the application of nanomaterials for treatment of breast cancer. Although breast

cancer treatment has been the focus of many experiments in recent years, it still causes high mortality rates among

patients, and the prognosis for many of them is unfavorable. There are several reasons for the inability to treat

breast cancer patients, including the development of drug resistance in patients that leads to chemotherapy failure

and the lack of diagnostic agents for on time detection of breast cancer patients. Based on these drawbacks, it

appears that breast cancer treatment requires an interdisciplinary approach. The aim of our review was to show

how nanotechnology can help in treatment, management and diagnosis of breast cancer. The most important

problem in the treatment of breast cancer is chemoresistance. The delivery of synthetic anticancer agents by

nanostructures can significantly enhance their internalization in breast tumor cells to potentiate their tumor‐

suppressor activity and simultaneously prevent the development of drug resistance. Furthermore, targeted delivery

of synthetic molecules reduces their side effects on normal cells. Noteworthy, nanocarriers can provide targeted

F IGURE 11 The endocytic pathway. The small molecules can enter into cells via diffusion, while large
compounds enter into cells in an energy‐deponent manner. For large compounds, two ways are utilized for
internalization of cells by transporters on cell surface or membrane remodeling and formation of vesciels.317 The
cells, viruses and proteins are internalized into cells via endocytosis. The macropinocytosis, clathrin‐ and caveola‐
mediated endocytosis can be employed for nanoparticle internalization. Furthermore, clathrin‐ and caveolae‐
independent endocytosis results in nanoparticle internalization. After the incorporation of nanoparticles in
endosomes, they can mediate protonation for endosomal escape and subsequent release in cytoplasm.318–321

[Color figure can be viewed at wileyonlinelibrary.com]
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delivery of natural products with anticancer activity. Furthermore, codelivery of natural and synthetic drugs by

nanomaterials promotes efficacy in breast tumor suppression and inhibits drug resistance development.

Although a great deal of effort has been put into passively targeting various types of nanocarriers for breast

cancer therapy, their antitumor efficacy and accumulation in the targeted tissue are limited. To address these

disadvantages, considerable attention has been devoted to stimuli‐responsive nanocarriers. Based on the type of

stimuli, which can be endogenous, exogenous, or a combination of both, different delivery systems have been

developed. Single stimulus‐sensitive systems like pH‐, glutathione‐, enzyme‐responsive carriers, etc. have shown

promising results, including better accumulation in the tumor's site and reducing the side‐effects of free

chemotherapeutic drugs. However, more attention goes to improving the potency of these carriers, so the research

trend gradually steered towards synthesizing multi‐responsive carriers with loading more than one drug in a single

carrier. Nonetheless, external‐responsive systems are of particular interest because their therapeutic approach is

not dependent on the drug but instead uses hyperthermia through magnetic‐ and PTT‐responsive agents and PDT

therapy. On the upside, they can eradicate the cancerous cells by generating local heat at the tumor's site, which

solves the problem of multidrug resistance. On the downside, there are still challenges revolving around these

agents, like the depth of laser light penetration in the tissues in the case of PTT and PDT therapies or taking better

control over the temperature increase induced by magnetic‐responsive materials. Another family member of

stimuli‐sensitive delivery systems is nanocarriers, which have both internal and external stimuli simultaneously.

Nowadays, there are more studies focusing on combining, for example, hyperthermia and chemotherapy into a

single package. It is expected that the research trend in this field goes more towards these carriers modified with

specific ligands to promote active‐targeting, improved accumulation at the site of action, and finally inducing drug

delivery and hyperthermia to efficaciously eliminate the tumor.

Another application of nanomaterials can be explored in delivery of genes for the purpose of breast cancer

suppression. Although gene therapy has opened a new window in breast cancer therapy, their efficacy in vivo and in

clinical trials appears to be limited due to poor accumulation at tumor site and risk of degradation by enzymes in

blood circulation. The nanoparticles provide encapsulation of genetic tools to protect them against degradation and

enhance their accumulation in tumor cells for improving efficacy in gene expression regulation and suppressing

breast cancer progression. The codelivery of genes and drugs can potentiate breast cancer therapy. The regulation

of TME components is of importance for cancer immunotherapy. The infiltration and cytotoxicity of T cells can be

improved using nanomaterials, and they can provide delivery of checkpoint inhibitors such as PD‐L1 inhibitors.

Furthermore, nanomaterials can induce polarization of M2 macrophages to M1 phenotype, preventing

immunosuppression. The most important and well‐known mechanism followed in breast cancer therapy is cell

death induction. The nanocarriers can provide both PTT and PDT in inducing cell death in breast tumor. The

mechanism of PTT is to provide hyperthermia, which mediates cell death, while PDT promotes ROS generation to

enhance apoptosis. Both PTT and PDT have demonstrated high potential in suppressing breast cancer progression

and reducing cell viability. Significant emphasis was put on the role of nanocarriers for enhancing internalization in

breast tumor, and the mechanism utilized is endocytosis. The clinical application of nanoparticles depends on

different aspects that should be considered. First of all, biocompatibility of nanoparticles should be considered, and

for this purpose, modification and green synthesis of nanomaterials should be performed.243,338–343 Another aspect

is large‐scale production and its affordability. For instance, hyaluronic acid is used for nanomaterial modification,

but it is an expensive agent and cannot be employed for clinical course. The majority of breast cancer patients are

diagnosed in advanced stages. The reason is the lack of specific symptoms for breast cancer at early stages, and

when cancer cells are malignant and have the capacity to develop therapy resistance, they are diagnosed and it is

difficult to treat. The developed nanoplatforms have the capacity to diagnose of biomarkers related to breast cancer

such as miRNAs and HER2, and the introduction of such nanomaterials into clinical course can lead to a milestone

progress in diagnosis of breast cancer patients.

In recent years, the field of inorganic nanomaterials, especially metal‐organic frameworks (MOFs), has rapidly

grown as a promising platform for drug and gene delivery applications. However, in this article, the focus was not
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about categorizing the nanoparticles/nanomaterials, we can make a clear future perspective about inorganic

nanomaterials in breast cancer therapy here. MOFs are highly porous materials, consisting of metal ions or clusters

coordinated to organic ligands. These materials have tunable pore sizes, high surface area, and can be engineered to

have specific chemical and physical properties, making them highly attractive for a wide range of biomedical

applications. In particular, the development of MOFs for breast cancer therapy has shown significant promise due

to their ability to improve drug delivery and overcome challenges related to drug resistance. However, challenges

related to the stability, biocompatibility, and targeting of MOFs must be overcome to enable their use in clinical

settings. Surface engineering approaches have been proposed to address these challenges and enhance the

performance of MOFs in drug and gene delivery applications for breast cancer therapy. The first step in the

development of MOFs for drug and gene delivery applications is the synthesis of MOFs with suitable chemical and

physical properties for biomedical applications. The chemical structure of MOFs can be engineered to provide

different surface functionalities and to enable the encapsulation and release of various drugs and genetic materials.

Surface functionalization can be achieved through the introduction of various functional groups, such as carboxyl,

amine, and hydroxyl groups, onto the organic ligands or through the use of post‐synthesis modifications.

Furthermore, MOFs can be engineered to have specific physical properties, such as pore size, surface area, and

stability, through the choice of metal ions and organic ligands. One of the major challenges in the development of

MOFs for biomedical applications is their stability and biocompatibility. MOFs are typically synthesized in

nonaqueous solvents, which can result in the incorporation of residual solvents or ligands that can be toxic to cells.

Additionally, the presence of metal ions in MOFs can induce toxicity and induce immune responses in vivo. To

address these challenges, various surface engineering approaches have been proposed to improve the

biocompatibility and stability of MOFs. One approach is the use of biocompatible coatings, such as PEG, to

shield the MOFs from the biological environment and reduce toxicity. Another approach is the incorporation of

biocompatible and biodegradable organic ligands, such as amino acids, into the MOF structure. Furthermore, the

use of metal ions that are less toxic or biocompatible, such as zinc or magnesium, has been proposed to reduce

toxicity and improve biocompatibility. Another challenge in the development of MOFs for drug and gene delivery

applications is the targeting of specific tissues and cells. MOFs can be functionalized with various ligands, such as

antibodies or peptides, to enable targeted delivery to specific cells or tissues. This can be achieved through the use

of bioconjugation techniques, such as click chemistry or thiol‐ene chemistry, to attach targeting ligands to the MOF

surface. Furthermore, the incorporation of stimuli‐responsive components, such as pH‐sensitive or temperature‐

sensitive moieties, can enable targeted drug release in response to specific physiological conditions. The use of

magnetic nanoparticles as external triggers for MOF drug release has also been explored. In the field of breast

cancer therapy, MOFs have shown significant promise as drug delivery vehicles due to their ability to enhance drug

efficacy and overcome challenges related to drug resistance. MOFs can be engineered to have specific physical and

chemical properties that enable efficient drug loading, controlled release, and targeted delivery. Furthermore,

MOFs can overcome challenges related to drug resistance by delivering multiple drugs simultaneously or by

delivering drugs in a synergistic manner to enhance their efficacy. The use of MOFs in combination with other

therapeutic approaches, such as PDT or immunotherapy, has also been explored to enhance their therapeutic

potential. The promising strategy for improving the performance of MOFs in drug/gene delivery and breast cancer

therapy is the use of smart surface engineering techniques. These techniques involve the functionalization of MOF

surfaces with stimuli‐responsive molecules, such as pH‐responsive polymers or temperature‐sensitive hydrogels.

These smart coatings can be designed to respond to specific stimuli in the tumor microenvironment, such as low pH

or high temperature, and release their cargo selectively in the tumor cells. Another strategy for improving the

performance of MOFs in drug/gene delivery and breast cancer therapy is the use of surface engineering techniques

to enhance the biocompatibility and reduce the immunogenicity of MOFs. One approach is to functionalize MOFs

with biocompatible polymers, such as PEG, to form a “stealth” coating that can prevent recognition and clearance

by the immune system. This can improve the pharmacokinetics and biodistribution of MOFs, leading to better

therapeutic outcomes. Moreover, surface engineering techniques can be used to enhance the specificity and
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selectivity of MOFs for breast cancer cells. One approach is to functionalize MOFs with targeting ligands, such as

antibodies or peptides, that can selectively bind to receptors overexpressed on breast cancer cells, such as HER2 or

EGFR. This can improve the cellular uptake of MOFs in breast cancer cells and reduce their uptake in healthy cells,

leading to improved therapeutic efficacy and reduced side effects. In addition to surface engineering techniques,

the use of MOFs in combination with other therapeutic modalities, such as chemotherapy or radiation therapy, is

another promising strategy for improving the treatment of breast cancer. One approach is to use MOFs as carriers

for chemotherapy drugs, such as doxorubicin or paclitaxel, to improve their delivery and reduce their side effects.

Another approach is to use MOFs as radiosensitizers, which can enhance the sensitivity of cancer cells to radiation

therapy and improve its therapeutic efficacy. Furthermore, the development of personalized medicine approaches,

such as the use of patient‐derived organoids or xenograft models, can enable the evaluation of the efficacy and

safety of MOFs in a patient‐specific manner. This can help identify the optimal MOF formulation and treatment

regimen for individual patients, leading to improved therapeutic outcomes and reduced treatment‐related toxicities.

In conclusion, the role of surface engineering in the world of MOFs for drug/gene delivery and breast cancer

therapy is rapidly evolving, and holds great promise for improving the efficacy and safety of cancer treatment.

Future research in this field should focus on the development of smart surface engineering techniques, the

enhancement of biocompatibility and specificity of MOFs, and the use of MOFs in combination with other

therapeutic modalities. With continued advancements in surface engineering and the increasing understanding of

the complex tumor microenvironment, MOFs are poised to revolutionize the treatment of breast cancer and other

cancers in the near future.
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