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A B S T R A C T   

As a clinically approved treatment strategy, chemotherapy-mediated tumor suppression has been compromised, 
and in spite of introducing various kinds of anticancer drugs, cancer eradication with chemotherapy is still 
impossible. Chemotherapy drugs have been beneficial in improving the prognosis of cancer patients, but after 
resistance emerged, their potential disappeared. Oxaliplatin (OXA) efficacy in tumor suppression has been 
compromised by resistance. Due to the dysregulation of pathways and mechanisms in OXA resistance, it is 
suggested to develop novel strategies for overcoming drug resistance. The targeted delivery of OXA by nano
structures is described here. The targeted delivery of OXA in cancer can be mediated by polymeric, metal, lipid 
and carbon nanostructures. The advantageous of these nanocarriers is that they enhance the accumulation of 
OXA in tumor and promote its cytotoxicity. Moreover, (nano)platforms mediate the co-delivery of OXA with 
drugs and genes in synergistic cancer therapy, overcoming OXA resistance and improving insights in cancer 
patient treatment in the future. Moreover, smart nanostructures, including pH-, redox-, light-, and thermo- 
sensitive nanostructures, have been designed for OXA delivery and cancer therapy. The application of 
nanoparticle-mediated phototherapy can increase OXA’s potential in cancer suppression. All of these subjects 
and their clinical implications are discussed in the current review.   

Introduction 

Cancer is among the most malignant diseases around the world with 
an increasing trend in its incidence rate. The cancer cells are charac
terized with their abnormal proliferation and metastasis as well as 

development of therapy resistance. There are two problems in cancer 
including diagnosis and treatment. The tumor is asymptomatic in early 
stages and therefore, most of the cancer patients are diagnosed in 
advanced stages, when the tumor has aggressive behavior and can 
develop therapy resistance. The treatment of cancer has also faced 
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difficulties, resulting from several factors. The changes and interactions 
in the tumor microenvironment (TME) can accelerate tumor progression 
and may develop therapy resistance [1]. The current therapeutics for 
cancer range from immunotherapy, chemotherapy, radiotherapy, sur
gical resection (in early stages) and targeted therapy. The immuno
therapy has revolutionized the process of cancer therapy and it can be 
utilized for both solid and hematological tumors, causing long-term 
responses [2,3]. However, a problem in cancer immunotherapy is 
long-term and remarkable immune responses only a minor proportion of 
patients [4]. Radiotherapy and chemotherapy suffer from resistance and 
adverse impacts. Furthermore, the targeted therapies, especially appli
cation of nanoparticles has been accelerated in the recent years, 
empowering cancer therapy [5,6]. The natural products are promising 
compounds in cancer therapy, but they suffer from poor bioavailability. 
The delivery of natural products by nanocarriers can improve their po
tential in cancer suppression. The resveratrol-loaded nanoparticles can 
suppress oral cancer through dully disruption of cancer invasion and 
angiogenesis [7]. Due to resistance of cancer cells to the therapy, new 
strategies were utilized, especially combination cancer therapy. The 
combinational therapy allows to increase sensitivity of cancer cells to 
drugs through application of drugs with different mechanisms of ac
tions. Veliparib is an PARP inhibitor that its combination with curcumin 
can cause synergistic impact in downregulation of PI3K/Akt and dis
rupting NECTIN-4-mediated angiogenesis [8]. Moreover, combinational 
therapy can increase the apoptosis induction in tumor cells [9]. For 
instance, resveratrol stimulates DNA damage to mediate apoptosis in 
cancer. The combination of resveratrol and olaparib can accelerate DNA 
damage through suppression of PARP1/BRCA1 [10]. The curcumin has 
been beneficial for apoptosis induction in cancer. A combination of 
curcumin and olaparib can downregulate BER cascade to increase DNA 
damage and apoptosis in cancer [11]. In spite of exploring several 
methods for the treatment of cancer, the patients still have problems in 
the clinical level, urging scientists to develop new strategies for tumor 
suppression. Although significant challenges and barriers are present in 
the way of cancer chemotherapy, it is still among the most common 
ways in clinical trials to treat patients and improve their prognosis. OXA 
is a third-generation platinum compound in tumor suppression. There 
was a 20-year gap from the year of discovery to its approval for clinical 
application (1976–1996). OXA has been beneficial in the monotherapy 
of tumors, and poly-chemotherapy can improve its anticancer activity 
[12]. The main way for administration of OXA is intravenous injection, 
which has a short initial phase of distribution followed by drug removal 
that is a long process and may be observed in the kidney after 48 h of 
administration [13]. Peripheral neuropathy can result from the use of 
OXA in cancer patients. Moreover, passive diffusion is involved in the 
cellular uptake of OXA, but it has been shown that active transport can 
increase its internalization [14]. When OXA enters cells, it can bind to 
DNA, RNA, and proteins [15]. OXA creates bindings with DNA to pre
vent the replication of DNA and its transcription. Compared to cisplatin, 
OXA generates fewer DNA adducts, but it provides higher cytotoxicity 
against tumor cells [16]. In spite of the novel action mechanism of OXA 
and its ability in tumor suppression, the emergence of resistance has 
decreased its potential in cancer suppression. Epigenetic alterations 
accelerate tumorigenesis, and changes in the expression level of 
non-coding RNAs can lead to OXA resistance [17,18]. To be more spe
cific, recent studies have evaluated the exact signaling networks 
participating in the OXA resistance of colorectal cancer (CRC). The 
down-regulation of circ-FLI1 in CRC leads to a reduction in the pro
gression of colon tumor, and this is of importance in overcoming OXA 
resistance via impairing dyskeratosis congenita [19]. ELK3 promotes 
RNASEH2A expression, triggering OXA resistance in gliomas [20]. 
LncRNA NEF participates in suppressing the MEK/ERK axis to reverse 
EMT and OXA resistance in the CRC [21]. Moreover, the transfer of DNA 
and other molecules by exosomes can result in OXA resistance [22]. 
Therefore, complicated interactions among molecular pathways can 
result in OXA resistance, and therapeutic approaches can be developed 

for reversing this condition [22–24]. 
Although the interactions occurring at the molecular level can 

change the chemotherapy response of cancer and, in most cases, lead to 
drug resistance, more attention should be directed towards solutions for 
overcoming chemoresistance than improving knowledge in the field of 
chemoresistance. Overall, three kinds of strategies can be developed for 
reversing drug resistance. The first strategy is to use combination cancer 
therapy, which means the co-application of two drugs with various 
anticancer activities. The anti-cancer compounds with pleiotropic 
function are suggested in cancer therapy due to the wide networks 
participating in tumorigenesis. Therefore, natural products can be 
considered as promising compounds in tumor eradication. However, 
since drugs still have poor bioavailability, more progress should be made 
for combination cancer therapy with drugs. In a more recent effort, 
genes and chemotherapy drugs are used together in synergistic cancer 
therapy. Similar to co-drug administration, gene and drug co- 
application suffer from poor bioavailability. Therefore, increasing evi
dence supports the fact that it is better to utilize nanoparticles for cancer 
chemotherapy. The reason is that nanoparticles mediate the site-specific 
delivery of drugs and genes in cancer therapy [25,26]. In the current 
review, the focus is on the role of nanostructures for targeted delivery of 
OXA in cancer therapy. This comprehensive review will provide 
state-of-the-art experiments related to using nanoparticles for OXA de
livery and enhancing its potential in cancer therapy and reversing 
chemotherapy resistance. 

Nanomedicine in cancer therapy 

After cardiovascular diseases, cancer is a leading cause of death. 
According to the statistics, it mainly affects US citizens aged 85 and 
younger [27]. Although significant achievements have caused surprising 
results in pre-clinical studies in cancer therapy, there is no profound 
impact on the cancer patients, and there is still a long way to go in this 
case. After the failures in the treatment of cancer patients, multiple 
examples of nanomedicine application and its promising results in 
cancer therapy were provided. In 2008, David and colleagues demon
strated that siRNA-loaded nanostructures can be systemically injected 
for the cancer therapy [28]. In 1971, the war against cancer was started, 
and from that time until now, there has been significant improvement in 
cancer therapy by coordinating and understanding environmental and 
molecular reasons for disease pathogenesis [29]. However, there is still 
much room for understanding the precise differences among normal and 
tumor cells that should be highlighted in future studies, and if such 
differences are not understood, it is impossible to counter and suppress 
cancer. The project to sequence the human genome was completed in 
2001 [30]. With subsequent improvements in data sequencing, it was 
found that improving the biological aspects of cancer can greatly help 
cancer therapy. After the completion of human genome sequencing, the 
new trend was directed towards the role of nanoscience in disease 
therapy, and nanoparticles are defined as structures with a size of 1–100 
nm. Nanomedicine is an interdisciplinary field with high application in 
disease therapy. The first application of nanomedicine is in bioimaging 
and biosensing, and if molecular imaging of living cells is provided, it 
can increase the efficacy of cancer therapy. Quantum dots (QDs) with 
fluorescent activity have been employed recently for the purpose of 
imaging, and due to their unique size of 1–10 nm and photochemical and 
photophysical features, they can be used as important agents and ma
terials for imaging [31–34]. However, most applications of nano
particles are in the field of cancer chemotherapy [35]. For multiple 
decades, combination therapy has been considered a promising field in 
clinics, and several principles should be considered. In the first place, the 
drugs that are going to be used together should be approved for clinical 
application, and then their mechanisms of action should be different. 
Moreover, there should be no cross-resistance, and they should exert 
synergistic impact in cancer therapy [36–38]. Due to the challenges of 
combination cancer therapy, it is suggested to use nanocarrier-based 
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methods for this purpose, in which one drug or two drugs can be loaded 
onto nanoparticles. Regarding the purpose of nanostructures for cargo 
delivery or imaging, various kinds of nanostructures have been devel
oped with distinct features. Liposomes, micelles, polymeric nano
particles, solid lipid nanomaterials, and inorganic materials are among 
the nanostructures employed for the purpose of cancer therapy [39]. 
Each of them can be used for drug delivery, and changes in their 
composition can affect their physico-chemical properties and their 
ability for drug delivery. Sometimes, the molecular weight of drugs is 
low, and they also suffer from poor bioavailability; in this case, their 
conjugation with antibodies is suggested to accelerate tumor suppres
sion [40]. Imaging and drug delivery are not the only fields in which 
nanocarriers can be used, and it has been reported that nanoparticles can 
be employed for immunotherapy, gene delivery, and overcoming drug 
resistance in cancer. In the next sections, the role of nanostructures for 
specific delivery of OXA is discussed. 

Nanoparticle-mediated drug delivery: beyond OXA 

Regarding the increased cases of therapy failure, the nanoparticle 
utilization for cancer chemotherapy has increased. Since the number of 
cancer patients is increasing and it may trespass cardiovascular disease 
in the next few years, it is absolutely necessary to find new solutions for 
overcoming chemoresistance in cancer patients. Fol-LMSO nano
structures are capable of delivering doxorubicin in breast tumor treat
ment, and the benefit of these nanostructures is to provide hyperthermia 
along with chemotherapy drug delivery [41]. An improvement in cancer 
drug delivery is to make them smart to some of the changes in tumors, 
such as pH. β-cyclodextrin/chitosan nanostructures are able to mediate 
the pH-sensitive release of doxorubicin in cancer therapy, and their zeta 
potential (+20 mV) demonstrates their high stability. Furthermore, 
these nanoparticles induce the prolonged release of doxorubicin, and 
due to their antioxidant activity, they may diminish the adverse impacts 
of chemotherapy drugs on other tissues [42].The ligand functionaliza
tion has improved the potential of nanoparticles in cancer therapy. 
Moreover, some of the nanostructures, such as mesoporous silica 
nanoparticles, have large pores in their structures that can be used for 
loading a high amount of doxorubicin into them, followed by their 
modification with TRAIL to increase selectivity. Moreover, such 
drug-loaded nanoparticles are able to induce DCs and CD4+ and CD8+ T 
cells and mediate an anticancer immune response [43]. 

Two aspects of chemotherapy drugs should be highlighted: first, they 
mediate DNA damage in reducing the viability of tumor cells, and 
simultaneously, they may cause toxicity in normal cells. The liposomal 
nanostructures were loaded with indocyanine green, and then they were 
used for the delivery of doxorubicin. At the next step, they were modi
fied with cRGD to selectively target cancer cells. It was found that such 
nanostructures not only elevate DNA damage in tumor cells but also, by 
providing targeted delivery, can reduce the toxicity of doxorubicin on 
heart tissue [44]. Noteworthy, polymeric nanostructures such as PLGA 
nanoparticles are also beneficial in cancer therapy. Then, paclitaxel was 
loaded on PLGA nanoparticles, and it was shown that such nano
structures preferentially accumulate at the tumor site to suppress cancer 
progression [45,46]. Cancer death mainly results from metastasis, and 
its suppression can provide new insight for cancer therapy and improve 
the prognosis of patients. Albumin-paclitaxel nanostructures have been 
modified with peptides, and their final size is in the range of 100–200 
nm, which means that they can impair the invasion of cancer and in
crease the potential of chemotherapy [47]. 

In addition, some of the drugs have been co-loaded on nanoparticles 
to impair tumorigenesis. The co-loading of paclitaxel and 5-fluorouracil 
on lipid-encapsulated mesoporous silica nanostructures and then their 
modification with folic acid These nanoparticles targeted breast tumor 
cells overexpressing the folate receptor, and this receptor was respon
sible for their internalization in breast tumor cells. Such targeted de
livery is of importance for improving the ability to achieve synergistic 

cancer suppression [48]. Furthermore, dextran nanostructures can be 
employed for the purpose of co-delivering etoposide and l-asparaginase 
to release drugs in a pH-sensitive manner, to increase internalization in 
cancer cells, and to suppress tumorigenesis [49]. Furthermore, 
co-delivery of chemotherapy drugs and genetic tools can be provided in 
tumor therapy, and polymeric nanoparticles can be utilized for doce
taxel and siRNA-CCAT2 delivery to disrupt lung carcinogenesis [50]. 
Therefore, nanoparticles can mediate sustained delivery of chemo
therapy drugs in potentiating cancer therapy, and their surface modifi
cation enhances preferential accumulation at the tumor site (Fig. 1) 
[51–53]. 

Targeted delivery and co-delivery approaches 

The nanostructures are widely applied for the delivery of OXA in 
cancer therapy. The reasons for the poor delivery of OXA can be sum
marized into several factors, but the most important one is that OXA 
suffers from poor bioavailability and its cytotoxicity against tumor cells 
decreases due to a lack of specific delivery. Some may consider 
increasing the concentration of OXA by increasing its levels in serum and 
suppressing cancer progression, but it is impossible to enhance the 
concentration of OXA beyond its optimal level due to the fact that when 
levels of OXA increase, it can lead to cytotoxicity in normal cells, and 
they can tolerate decreases. Moreover, nanostructures are suggested to 
be completely vital for the purpose of combination cancer therapy, and 
by application of nanoparticles, it is possible to accelerate cytotoxicity 
against cancer. The aim of the current section is to provide an in-depth 
discussion of using nanomaterials for OXA delivery and along with other 
drugs or genes in tumor suppression. Chitosan (CS) is one of the natural 
polysaccharides that can be derived from chitin through its N-deacety
lation, and this biomaterial has shown promising features including 
biocompatibility, biodegradability, and adjustable mechanical and 
physico-chemical features [54–56]. Moreover, CS has demonstrated 
other vital pharmacological characteristics such as antibacterial, anti
oxidant, and antitumor effects [57]. Recent studies have shown that 
CS-based nanoparticles can be used for drug [58] or gene [25] delivery 
in tumorigenesis suppression. Moreover, PEGylation of CS nanoparticles 
is performed to increase their potential for cancer chemotherapy and 
delivery [59]. A recent study has prepared CS-based nanostructures for 
the co-delivery of OXA and ascorbic acid in breast tumor treatment. The 
diameter of the nanoparticles was in the range of 157–261 nm, and their 
zeta potential was +22 to +4 mV. They demonstrated high entrapment 
efficiency and mediated the sustained release of cargo in suppressing 
tumorigenesis. Moreover, these nanoparticles release drugs in response 
to pH 5.5 [60]. 

5-Flourourouracil (5-FU) is one of the most common chemotherapy 
drugs for colon cancer, and this pyrimidine analog suppresses thymi
dylate synthesis for the purpose of cancer therapy [61,62]. The short 
half-life of 5-FU and its poor membrane permeability and distribution in 
both normal and cancer cells have been among the drawbacks of this 
chemotherapy drug [63–66]. Moreover, high activity of P-glycoprotein 
(P-gp) as a drug efflux pump can result in a reduction in the cytotoxicity 
of 5-FU and the development of resistance [67]. For improving 5-FU-in
duced cancer suppression, it is usually used with other compounds. One 
of the newest advances is the delivery of 5-FU by nanoparticles for 
effective cancer therapy and overcoming drug resistance [68,69]. The 
PHBV/PLGA nanostructures have been fabricated for the co-delivery of 
OXA and 5-FU in colon tumor treatment, and they accelerate ROS levels 
to stimulate apoptosis. Furthermore, they have high biocompatibility, 
and such co-delivery synergistically suppresses tumorigenesis [70]. 

Sometimes, peptides can be conjugated to OXA for targeted delivery 
of colorectal cancer. A cell-penetrating peptide (CPP) octaarginine-OXA 
conjugate is able to deliver into colon tumor cells and reduce the IC50 
value of OXA [71]. PLGA-PEG nanoparticles were modified with anti
bodies, and they were used for the delivery of OXA in CRC therapy. They 
had particle sizes of 207 and 185 nm, and modification with anti-CD133 
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antibodies enhanced delivery towards tumor cells [72]. Solid lipid 
nanoparticles (SLNs) were introduced in the 1990s, and they were 
considered alternative nanoparticles for liposomal nanostructures, 
polymeric nanostructures, and nanoemulsions [73]. Moreover, poly
meric nanoparticles can lead to acute and chronic toxicity [74]. 
Therefore, SLNs were considered biocompatible and promising nano
carriers for OXA delivery in CRC therapy. Then, nanoparticles were 
modified with folic acid, and their particle size was 146.2 nm. Such 
OXA-loaded SLNs displayed high anticancer activity [75]. Although the 
purpose of the current study is to understand the role of nanoparticles in 
the delivery of OXA in cancer therapy, microparticles, microbubbles, 
and even films can be utilized for the delivery of OXA and other com
pounds in cancer chemotherapy [76–78]. 

At the clinical level, OXA can be used in combination with 5-FU in 
CRC therapy. The FDA organization in the USA has confirmed the 
application of OXA along with 5-FU and leucovorin in cancer therapy 
[79,80]. However, both OXA and 5-FU display low bioavailability upon 
intravenous administration, and their intestinal membrane permeability 
is low. Therefore, their long-term application through oral administra
tion is not suggested [81–83]. Nanoemulsions have been developed for 
the co-delivery of OXA and 5-FU in cancer therapy with a particle size of 
20.3 nm and a zeta potential of − 4.65 mV. These nanoemulsions 
demonstrated high permeability through a Caco-2 cell monolayer, with 

an approximately 4-fold increase in permeability compared to the drug 
alone. These nanoparticles increased the oral bioavailability of drugs, 
and in an animal model, they suppressed tumorigenesis [84]. Note
worthy, clinical application is mainly dependent on the biocompatibility 
of nanostructures. Therefore, increasing evidence suggests using lipo
somes and their smart and stimuli-sensitive forms for OXA delivery in 
cancer therapy and improving the potential of OXA in chemotherapy 
[85,86]. Furthermore, when liposomes deliver OXA to tumor sites, due 
to their biodegradability, they display no toxicity on the body, and 
therefore, they are promising nanocarriers in this case [87]. 

Since monotherapy has not been beneficial for cancer suppression, 
studies have focused on polychemotherapy. Based on the guidelines of 
the American Cancer Society, a combination of OXA and irinotecan has 
been considered a first-line treatment for tumors, and for OXA and iri
notecan, the dosages of 85 mg/m2 and 200 mg/m2 are recommended. 
Owing to distinct characteristics of liposomes including their safety, 
small particle size, biodegradability, and ability to encapsulate hydro
phobic and hydrophilic drugs, liposomes have been applied for the co- 
delivery of OXA and gemcitabine in carcinogenesis suppression. The 
liposomes demonstrated particle sizes less than 200 nm, and their size 
distribution was uniform. Moreover, liposomes are capable of releasing 
drugs synchronously, allowing the synergistic effects of drugs. They 
show preferential accumulation at tumor cells, and such 

Fig. 1. The role of nanostructures for delivery of chemotherapy drugs. The nanocarriers can utilize multiple methods for the suppression of cancer. The nanoparticles 
can improve the internalization of current chemotherapy drugs to accelerate tumor suppression. Moreover, nanoparticles mediate co-delivery of chemotherapy drugs 
and genes in synergistic cancer therapy. Even the anti-tumor immune responses including increase in the number of CD4+ and CD8+ T cells can be induced by 
nanocarriers. Moreover, nanoparticles respond to certain stimuli in tumor microenvironment including pH and their functionalization with ligands and peptides such 
as cRGD can improve potential in targeting cancer cells and inducing DNA damage. 
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nanoformulation is interesting for the purpose of cancer therapy [88]. 
Mainly, experiments have emphasized on the co-delivery of OXA 

with other anticancer drugs, but it appears that one of the newest de
velopments may be loading a photosensitizer and OXA drug in cancer 
therapy. OXA and HCE6 (photosensitizer) were loaded on mesoporous 
silica nanostructures, and they released OXA at an acidic pH. The drug- 
loaded nanostructures stimulated apoptosis in tumor cells and increased 
the expression level of autophagic factors. Moreover, they can reduce 
tumor growth in vivo [89]. Moreover, they can reduce tumor growth in 
vivo [87]. Moreover, OXA-loaded nanostructures can trigger immune 
responses in cancer cells. Dendrosomes can be derived from mature 
dendritic cells, and then a PDEA polymer and OXA prodrug combination 
can be loaded into dendrosomes. After blood stream circulation, such 
OXA-loaded nanoparticles can enter the tumor microenvironment and 
induce the maturation of dendritic cells to increase T cell activity, 
mediating immunogenic cell death and reducing tumorigenesis [90]. 
Hence, chemotherapy and immunotherapy combination synergistically 
suppresses tumorigenesis. The microemulsions have been prepared by 
nanoprecipitation technique, and then OXA and folinic acid have been 
loaded in nanocarriers. The CRC and liver tumor can be sensitized to 
5-FU to induce immunogenic cell death. Moreover, such nanoparticles 
stimulate apoptosis and immunogenic cell death, reducing tumorigen
esis. Moreover, an in vivo experiment revealed the efficacy of these 
nanocarriers for reducing tumor size [91]. According to these studies, 
the development of nanocarriers accelerates OXA-induced tumor sup
pression ability [92–96]. Moreover, OXA can be loaded along with 
natural products such as resveratrol on nanocarriers to mediate 
poly-chemotherapy (Fig. 2, Table 1) [97]. 

Smart nanostructures 

The multifunctional and smart nanocarriers have revolutionized the 
field of cancer therapy. pH-sensitive nanoparticles are widely utilized in 
tumor suppression. The tumor microenvironment (TME) displays 
unique properties including increased temperature, changes in levels 
and activity of enzymes, dysregulation of redox status, and a reduced pH 
level near 6.5 [118]. There are several reasons for the low pH level of 
TME, but the most prominent one is the preference of tumor cells for 
aerobic glycolysis instead of oxidative phosphorylation for ATP pro
duction [119–122]. Regarding this property, pH-sensitive nano
structures have been developed for drug release in acidic conditions 
[123]. The mechanism of pH-sensitive bonds can be based on protonable 
groups or acid-sensitive bonds [124,125]. Recently, the concept of 
protein cages has been interesting and includes ferritin, viral capsids, 
and heat shock proteins [126]. Ferritin is a protein for storing iron that 
can be found naturally in humans and other living organisms. Ferritin 
has 24 subunits, a molecular weight of 440 kDa, and a hollow sphere 
structure. Ferritin is known as a protein nanocage, and it has an internal 
diameter of 8 nm and an external diameter of 12 nm [127–129]. 
Recently, apoferritin nanocages with pH-sensitive activity have been 
designed for OXA delivery in CRC therapy. The PEG has been used as a 
linker in the structure of nanocarriers, and they have been functional
ized with panitumumab for specific targeting of the EGFR receptor on 
the surface of tumor. At pH 7, there is no release of OXA, but at a pH 
level of 4, OXA release occurs, which results in a reduction in the pro
gression of CRC cells. These nanocages demonstrate high accumulation 
in tumor tissue, and they can suppress tumor proliferation [130]. 

Due to the important function of pH-sensitive nanoparticles for OXA 
delivery, there has been interest in using such nanostructures for the co- 

Fig. 2. The delivery of OXA and also co-delivery in cancer chemotherapy. The targeted delivery of OXA can enhance activity and infiltration of T cells to augment the 
anti-cancer immune responses. The chitosan-based nanoparticles can release chitosan and ascorbic acid in response to pH for cancer removal. Moreover, PLGA/PHBV 
nanoparticles respond to ROS to induce apoptosis after OXA release. The co-delivery of OXA with other kinds of drugs such as gemcitabine and 5-flourouracil by 
nanoparticles has been evaluated in cancer therapy. The functionalization of nanoparticles with folic acid increases their potential in targeted delivery of drugs. 
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delivery of OXA and other antitumor compounds to promote their spe
cific release at the tumor site. Hesperetin is one of the anticancer agents, 
and its delivery by PEGylated gold nanoparticles [131] or PLGA nano
structures [132] has been beneficial in improving its cytotoxicity against 
tumor cells. The nanoliposomes have been designed using the thin film 
hydration method, and then they have been coated with okra gum so 
that the final nanostructure has a cationic feature. Then, OXA and hes
peretin have been loaded on liposomes, and the final particle size is 
145–175 nm. They have a zeta potential of − 29 mV, and their EE for 
OXA and hesperetin is 66% and 98%, respectively. The modification of 
liposomes with cationic Okra gum improved the stability of liposomes, 
and this co-delivery exerted a synergistic impact on CRC suppression 
[133]. However, for improving the potential for drug delivery, studies 
have evaluated dual functionalized complexes for the purpose of OXA 
delivery in cancer therapy [134]. One of the newest advances in OXA 
delivery by nanoparticles is the provision of pH-sensitive nanostructures 
that are capable of OXA and microRNA (miRNA) co-delivery. 
miRNA-320 is a newly discovered molecule in cancer, and its low 
expression leads to enhancement in the growth and metastasis of breast 
tumor cells [135]. SOX4, FOXM1, and FOXQ1 are among the targets of 

miR-320 for purposes of cancer therapy [136,137]. Therefore, the 
function of miR-320 is pleiotropic, and if its delivery is mediated, it can 
suppress tumorigenesis. In a recent effort, pH-sensitive nanostructures 
have been prepared for the delivery of miR-320 and OXA in head and 
neck cancer treatment. In order to prevent peptide degradation, the 
surface of nanoparticles has been coated with a shield, and then, due to 
their pH-sensitive feature, the peptides are exposed when they are at the 
acidic pH of TME. These pH-sensitive nanostructures increased the 
cellular uptake of OXA and miR-320, and they mediate nucleus and 
cytoplasmic delivery of the cargo for effective cancer suppression. This 
co-delivery was beneficial in suppressing growth, metastasis, and 
overcoming chemoresistance due to modulation of NRP1/Rac1, 
PI3K/Akt/mTOR, GSK-3β/FOXM1/β-catenin, P-gp/MRPs, KRA
S/Erk/Oct4/Yap1, and N-cadherin/Vimentin/Slug pathways [138]. 

Although hydrogels are not nanostructures, it is worth mentioning 
that they can be deployed for sustained pH-release of OXA in cancer 
therapy due to their high biocompatibility [139]. Furthermore, due to 
advances in the field of chemistry, different chemical complexes can be 
developed for pH-sensitive delivery of OXA in cancer therapy [140]. 
Various kinds of nano-scale delivery systems have been developed for 

Table 1 
Nanostructure-mediated OXA delivery.  

Nanvehicle Drug Cancer type Remark Refs. 

CuS@UiO-66-NH2 OXA Colorectal cancer Higher cytotoxicity compared to OXA alone [98] 
Thermosensitive liposomes OXA Breast cancer Complete release of drug at 42 ◦C 

High cytotoxicity and retention time 
[99] 

Erythrocyte-delivered photoactivatable 
oxaliplatin nanoprodrug 

OXA Breast cancer Increased antitumor activity 
Inducing anticancer immune response 
Reducing tumorigenesis 

[100] 

PEGylated multi-walled carbon nanotubes OXA Colorectal cancer Loading efficiency of 43.6% 
Controlled release of drug 
High cytotoxicity 

[101] 

Polysaccharide based functionalized polymeric 
micelles 

OXA 
Vanillic acid 

Colon cancer Synergistic impact and targeting different molecular pathways such as 
mTOR/Ras pathway, HIF-1α inhibition, NF-ĸB, and Nrf2 

[102] 

Self-assembled nanoscale coordination polymers OXA 
Gemcitabine 

Pancreatic cancer Inhibition of cellular uptake by MPS system 
Increased half-life and blood circulation time 
Synergsitic impact 

[103] 

Poly(Ethylene Glycol)- b-Poly(D,L-Lactide) 
Nanoparticles 

OXA – OXA as hydrophobic compound is absorbed into core-corona interface 
Increasing PLA block length reduces drug loading 
Encapsulation efficiency of 76% 

[104] 

Oxaliplatin-loaded nanoemulsion containing 
Teucrium polium L. essential oil 

OXA Colon cancer Increasing ROS levels to induce apoptosis in cancer cells [105] 

oxaliplatin(iv) prodrug-based supramolecular 
self-delivery nanocarrier 

OXA Colorectal cancer Cargo release in response to redox status 
Increased intracellular accumulation in tumor cells 
High anticancer activity 

[106] 

Electrospun polylactide nanofibers OXA 
5-flouroracil 

Colorectal cancer Reducing tumor growth 
Increasing survival time of animal model 

[107] 

An ultrasound responsive microbubble-liposome 
conjugate 

OXA 
Irinotecan 

Pancreatic cancer UTMD accelerates release of drug from nanostructures and this combination 
therapy leads to synergistic impact 

[108] 

Gold nanoparticles OXA Colon cancer Functionalization with PEG 
High cellular uptake and anticancer activity 

[109] 

Mesoporous silica nanoparticles OXA Liver cancer Enhanced cellular uptake by cancer cells 
Concentration into lysosomes and endosomes 
High antitumor activity 
Increased DNA binding activity 

[110] 

PEGylated PAMAM dendrimers OXA Cervical cancer Loading efficiency of 84.63% 
Lack of burst release and drug release in a sustained manner 
Increasing killing potential 

[111] 

Micelles OXA Colorectal cancer Elimination of cancer stem cells [112] 
Oral nanoemulsions OXA Melanoma Increased anticancer immunity 

Promoting tumor antigen uptake 
Stimulation of dendritic cells 

[113] 

Metal-Organic Frameworks OXA Hepatocellular 
carcinoma 

Chemodynamic therapy by exposure of composites into irradiation to 
mediate phototherapy and chemotherapy 

[114] 

Magnetic nanocarriers of pectin OXA Pancreatic cancer Zeta potential of − 30.5 demonstrating high biocompatibility of nanocarriers 
Drug encapsulation efficiency of 55.2% 
Controlled release and high cytotoxicity 

[115] 

PEG-coated cationic liposomes OXA Murine solid tumor Deep penetration into enlarged intra-tumoral interstitial space 
Effective drug delivery 
Suppressing tumorigenesis 

[116] 

PEGylated liposome OXA – Increasing intracellular distribution 
Apoptosis induction 

[117]  
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cancer chemotherapy, including liposomes [141–143], polymeric 
nanostructures [144–146], hybrid nanomaterials (organic and inorganic 
materials) [147–149], and other methods [150–152]. The development 
of pro-drugs for the co-delivery of OXA with other anticancer agents and 
being responsive to stimuli are of importance in cancer therapy [153]. 
Doxorubicin (DOX) resistance is one of the newest emergency conditions 
in cancer because of the abnormal alterations in the genetic and 
epigenetic profile of tumor cells. When it is brought to the concept of 
bioengineering, it is believed that nanostructures, especially function
alized nanocarriers, can provide targeted delivery of DOX, improving its 
anticancer potential, and moreover, co-delivery of DOX with other 
antitumor compounds is of importance in cancer therapy. In a recent 
effort, a supramolecular amphiphilic complex has been designed for the 
preparation of an OXA-based prodrug to encapsulate DOX and provide 
an EPR effect. At the low pH level of lysosomes, these complexes release 
cargo in cancer therapy, and they have a superior capacity to penetrate 
through the cell membrane [153]. Another important factor for the 
development of smart nanocarriers is redox balance (reactive oxygen 
species, or ROS). In an effort, PEI nanoparticles have been developed for 
the delivery of OXA in cancer therapy, and they have been complexed 
with GOD and RNBC. When these redox-responsive nanoparticles 
accumulate in tumor cells, they are reduced to release RNase A, and a 
cytotoxic Pt(II) drug is developed. Then, DNA replication is suppressed 
by the RNase enzyme, and the way is paved for OXA to exert its anti
cancer activity [154]. 

These discussions revealed the role of endogenous stimuli-responsive 
nanocarriers for sustained delivery of drugs and other cargo in cancer 
therapy. Light-inducible nanocargoes (LINC) have been promising 
structures for controlled and spatiotemporal release of cargo in cancer 
therapy. The LINC can be employed for the purpose of immunogenic cell 
death (ICD) induction and to diminish the expression level of IDO-1. The 
nanostructures have been utilized for the delivery of OXA, 

photosensitizer pheophorbide A (PPa), and IDO-1 inhibitor NLG919 
(termed as PN). The nanocarriers are responsive to GSH and release 
cargo in response to GSH levels. The interesting part is related to the 
prodrug OXA, which is light-responsive, and when irradiation occurs, it 
causes the synergistic impact of OXA and PPa-SH in triggering ICD and 
increasing anticancer immunity (Fig. 3) [155]. Therefore, smart nano
structures are beneficial for the purpose of OXA delivery in tumor sup
pression (Table 2). 

Fig. 3. Stimuli-responsive nanoparticles in cancer chemotherapy. The emergence of stimuli-sensitive nanocarriers has revolutionized cancer therapy, since there are 
specific features in the tumor microenvironment including low pH levels and redox imbalance. The increase in GSH levels and decrease in pH levels can cause release 
of OXA from nanoparticles in cancer therapy. 

Table 2 
The role of smart nanoparticles for OXA delivery in cancer therapy.  

Nanoparticle Remark Refs. 

pH-responsive nanoprodrugs 
combining a Src inhibitor and 
chemotherapy 

pH-sensitive nanomicelles for 
delivery of OXA and masitinib in 
increasing anticancer immunity 

[156] 

Lipid-Coated CaCO3 Nanoparticles pH-sensitive release of OXA 
Increasing blood circulation time 
Enhancing antitumor immunity 

[156] 

PEGylated dendritic 
diaminocyclohexyl-platinum (II) 
conjugates 

EPR effect 
Increased tumor accumulation 
Suppressing tumorigenesis in vivo 

[157] 

Polymeric nanocomplex Redox-responsive release of OXA 
and protein in synergistic cancer 
therapy 

[154] 

Light-Inducible Nanocargoes Stimulation of ICD and enhancing 
anticancer immunity 

[155] 

Laser/GSH-Activatable Oxaliplatin/ 
Phthalocyanine-Based 
Coordination Polymer 
Nanoparticles 

A combination of chemotherapy 
and phototherapy to increase 
anticancer immunity 

[158] 

Magnetic Thermosensitive Cationic 
Liposome 

Anti-lncRNA MDC1 and OXA co- 
delivery in synergistic cancer 
therapy 

[159]  
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Functionalized nanostructures 

Notably, functionalization of nanostructures with ligand has been an 
essential part of targeting cancer cells in a specific way. A number of 
ligands, including lactoferrin [160], folate [161], and NGR peptide 
[162], have been utilized for the modification of liposomes to improve 
their targetability towards tumor cells. On the nucleus and cell mem
brane, there are estrogen receptors [163,164] that are involved in 
various biochemical and physiological mechanisms [165]. Estrogen re
ceptors display upregulation in different kinds of tumors, such as breast 
[166], lung, gastric, and ovarian cancers [167,168], and they can be 
considered promising targets in cancer drug delivery. A recent experi
ment has developed PEGylated liposomes. Such estrogen-targeted 
PEGylated Liposomes have been prepared using the film hydration 
method, and they have been utilized for the co-delivery of OXA and 
paclitaxel. After internalization in tumor cells due to binding to the es
trogen receptor, they released OXA and paclitaxel to suppress microtu
bule balance and mediate cell death [169]. In addition, 
estrogen-targeted PEGylated OXA-loaded liposomes have been used 
for the treatment of gastric cancer [170]. Cetuximab (CTX) as an anti
body has emerged recently as a specific agent for the epidermal growth 

factor receptor (EGFR), and CRC cells mainly upregulate this receptor 
[171,172]. After the attachment of CTX to EGFR, internalization occurs 
and this receptor is suppressed. In addition, signals related to apoptosis 
induction are mediated, and subsequent activation of the immune sys
tem leads to tumor cell death [173]. In 65–70% of CRC cases, EGFR 
demonstrates an increase in expression [174,175]. After loading OXA in 
liposomes, they have been functionalized with CTX to selectively target 
the EGFR receptor in CRC cells, and such modification enhances cellular 
uptake by three times compared to conventional liposomes. Moreover, 
animal experiments highlighted the role of CTX-modified OXA-loaded 
liposomal nanoparticles in suppressing CRC progression [176]. In 
addition, transferrin-conjugated PEGylated liposomes can be used for 
OXA delivery in cancer therapy [177]. Therefore, modification of 
nanostructures with ligands significantly increases their potential for 
targeted delivery and cancer suppression. Moreover, modification with 
ligands does not increase the size of nanostructures, and they are still 
promising carriers for OXA in cancer chemotherapy [82,178–180]. 

Exosomes as new emerging structures in oxaliplatin delivery 

Exosomes belong to extracellular vesicles, and their small size is less 

Fig. 4. Ligand-modified nanoparticles and exosomes in OXA delivery. The functionalization of nanoparticles with ligands has been emerged as a promising strategy 
in cancer therapy. The unmodified nanoparticles improve the pharmacokinetic profile of OXA, but ligand-functionalized nanoparticles can specifically target the 
tumor cells due to overexpression of receptors. Moreover, functionalization can increase the internalization of nanoparticles in the tumor cells through endocytosis. 
The exosomes are also ideal carriers for OXA, since their biocompatibility is high and they can delivery cargo with high efficacy. 
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than 100 nm. They can carry bioactive molecules such as proteins, 
lipids, and nucleic acids [181]. Recently, the function of exosomes in 
cancer has been of importance, and they could be secreted by macro
phages and cancer cells to regulate tumorigenesis [182]. The bio
engineered exosomes can be utilized for the delivery of OXA in cancer 
therapy. OXA and PGM5-AS1 can be co-loaded in exosomes for the 
purpose of colon cancer therapy. Increasing the expression level of 
PGM5-AS1 suppresses proliferation, metastasis, and OXA resistance in 
colon cancer. Co-delivery of OXA and PGM5-AS1 by exosomes leads to 
overcoming OXA resistance in colon tumors. Interestingly, after delivery 
of PGM5-AS1, it decreases REAP expression via recruiting SRSF3. 
Moreover, PGM5-AS1 sponges miR-423–5p to enhance NME1 expres
sion [183]. It has been reported that high expression levels of CPT1A 
enhance FAO expression in mediating OXA resistance. The exosomes can 
be modified by iRGD to mediate selective targeting of colon tumor cells. 
The targeted delivery of CPT1A-siRNA by iRGD-functionalized exo
somes leads to increased OXA sensitivity in colon tumors (Fig. 4) [184]. 
However, a few studies have focused on using exosomes in cancer 
therapy and reversing OXA resistance. 

Current limitations of nanoparticles: pre-clinical and clinical 
insights 

A major frontier in the cancer therapy is the development of multi
functional nanoparticles [185]. The pre-clinical studies have confirmed 
the efficacy of nanoparticles in cancer removal. In spite of significant 
studies evaluating nanoparticle-mediated cancer therapy, a few types of 
nanocarriers have been introduced into clinic. Hence, the current 
problems and limitations of nanoparticles for clinical utilization should 
be addressed [186]. The nanoparticles have differences in composition, 
size, surface charge, porosity and aggregation behavior, known as 
physico-chemical properties [187,188]. The significant alterations in 
the physico-chemical features make it difficult to understand mecha
nism of action and their characteristics before and after administration. 
The heterogeneity of nanostructures regarding to size, shape and mass is 
considered as polydispersity index (PDI). Even the partial changes in PDI 
and physico-chemical features of nanoparticles can change and deter
mine the biocompatibility, toxicity and in vivo results [189–192]. The 
safety concerns are of high importance for the nanoparticles due to their 
wide application and their impact on the human health and environ
ment should be critically evaluated. The nanoparticles have a nano-scale 
size that is similar to the organelles or the biomolecules participating in 
the cellular signaling. The nanoparticles may interact negatively with 
the biological mechanisms. Therefore, the nanotoxicology field has been 
emerged and evaluating the toxicity concern of nanostructures before 
their clinical application is vital [190,193]. The comparison of toxicity 
rates among nano- and macro-materials is difficult. Moreover, toxicity 
evaluation of nanoparticles is similar to the classical drugs using same 
experiments, showing that current assays for evaluating toxicity of 
nanoparticles are not enough [194,195]. Regardless of the properties 
and biocompatibility, there are also regulatory issues regarding appli
cation of nanoparticles and they should be approved by FDA and Eu
ropean Medicines Agency (EMA). The current problem is that FDA and 
EMA, among other agencies, have not still provided the specific criteria 
and guidelines for the drug-loaded nanoparticles. Recently, the FDA 
rules for the application of drug-loaded nanoparticles in clinic have been 
summarized [196]. In June 2014, the guidelines regarding the appli
cation of products having nanoparticles was released [197]. Accord
ingly, the nanostructures are defined as particles with at least one 
dimension and particle size of 1–100 nm. The materials with dimensions 
up to 1 μm with nano-properties can be also considered, if they 
demonstrate quantum impacts. Another issue is the manufacturing 
process of nanoparticles that is quite challenging and the current clinical 
and pre-clinical studies have been performed with a low amount of 
nanostructures. One of prominent problems in the clinical level is that 
when large-scale production occurs, the differences in the 

physico-chemical features are observed because of PDI of nanoparticles 
[198]. This may subsequently affect the efficacy of nanoparticles at the 
clinical level. Hence, the large-scale production of nanoparticles in in
dustry should be tightly controlled to develop nanoparticles with 
favorable physico-chemical characteristics [199]. The clinical applica
tion of nanoparticles has been mainly based on diagnosis including 
utilization of ligand-receptor interactions for the early diagnosis of 
cancer or application of biomarkers for determining the best therapeutic 
option for the patients [200]. If the EPR effect of a patient is determined, 
it can be understood that how the cancer patients responds to the 
therapy and if the nanostructures can appropriately accumulate in the 
tumor site [201]. Therefore, the nanoparticles can revolutionize the 
precision medicine. However, there is still a long way for clinical 
regulation of immune system and gene editing by nanoparticles and 
their industrial production. 

Conclusion and remarks 

The first benefit of nanoparticles is that they can deliver OXA to 
tumor tissue in a very targeted way. This kind of delivery is important 
for two reasons. The first reason is that when smart and stimuli-sensitive 
nanoparticles are used for OXA delivery, they mediate cargo release 
exactly at the tumor site, and therefore, an increase in the cytotoxicity of 
drugs is observed. The second reason is that OXA has concentration- 
dependent toxicity, and such site-specific delivery prevents the accu
mulation of OXA in normal tissues and decreases side effects. The smart 
nanoparticles can be responsive to endogenous or exogenous stimuli. In 
the first type of nanocarrier, they can be developed in a way that is 
responsive to pH and redox, and in the exogenous-responsive nano
particles, they can be sensitive to light and heat. In both cases, smart 
nanoparticles are promising factors for the purpose of cancer therapy, 
and if they are combined for the development of multifunctional 
nanocarriers, their efficacy in site-specific and precise release of drugs 
increases. The benefit of light-responsive nanocarriers is that they can 
mediate phototherapy along with chemotherapy to accelerate the pro
cess of cancer elimination. One of the most important benefits of 
nanoparticles is their ability to deliver OXA at the tumor site and 
enhance its internalization by tumor cells. Such increased cellular up
take promotes cytotoxicity against tumor cells, which is beneficial in 
preventing drug resistance in cancer cells. However, in most cases, 
polychemotherapy is preferred, and therefore, OXA is combined with 
other anticancer drugs for tumor suppression. Interestingly, nanoplat
forms can mediate the co-delivery of drugs in synergistic cancer therapy. 
Furthermore, genes can be loaded on nanoplatforms to be delivered with 
OXA in cancer gene therapy or chemotherapy. However, there is no 
experiment about the delivery of OXA with CRISPR/Cas9 in cancer 
therapy. Furthermore, modification of nanoparticles with ligands and 
antibodies can increase selectivity toward tumor cells. However, there is 
no experiment about the modification of nanostructures with aptamers 
in cancer chemotherapy. Although different kinds of polymeric-, lipid-, 
and carbon-based nanomaterials have been used for OXA delivery 
[202–205], there is little attention given to the use of metal nano
particles in OXA delivery. Moreover, there is no experiment about the 
delivery of OXA by layered double hydroxide (LDH) nanostructures in 
cancer therapy. 

The pre-clinical studies have focused on understanding the applica
tion of OXA-loaded nanoparticles in the treatment of cancer. The in
crease in cellular accumulation, co-delivery with drugs and genes, 
specific targeting of cancer cells, especially the ligand-functionalized 
nanocarriers and utilization of exosomes as new kind of structures for 
OXA delivery, are a number of benefits using nanostructures in OXA 
chemotherapy. However, the clinical application of current studies re
quires more investigation. Moreover, the type of nanoparticle utilized in 
clinical trial is of importance. Between the years 2002 and 2016, there 
has been an increase in the application of protein nanoparticles, but 
after that and between 2016 and 2021, there has been an increase in the 
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application of liposomal nanostructures [206]. Therefore, among the 
various nanostructures used in OXA delivery, exosomes, liposomes and 
polymeric nanoparticles have the highest chance for application in 
treatment of cancer. The newest clinical trial product was Pfizer vaccine 
for COVID-19 that also utilized the liposomes for the mRNA delivery. 
The long-term safety and biocompatibility of liposomes have been 
recognized. Moreover, since exosomes can be obtained from the cells, 
their biocompatibility is high and if they are utilized in cancer therapy, 
they are not recognized as foreign bodies by immune cells. In the future, 
there is high possibility of using liposomes and exosomes for the delivery 
of OXA for treatment of cancer in clinical trials. However, the large-scale 
production of nanoparticles and determining the physico-chemical fea
tures of structures in the industrial range are still problems. 
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[49] M. Konhäuser, V.K. Kannaujiya, E. Steiert, K. Schwickert, T. Schirmeister, P. 
R. Wich, Co-encapsulation of l-asparaginase and etoposide in dextran 
nanoparticles for synergistic effect in chronic myeloid leukemia cells, Int. J. 
Pharm. 622 (2022), 121796, https://doi.org/10.1016/j.ijpharm.2022.121796. 

[50] D. Xiao, X. Hu, J. Zhang, Tumour targeted polymer nanoparticles co-loaded with 
docetaxel and siCCAT2 for combination therapy of lung cancer, J. Drug Target. 30 
(2022) 534–543, https://doi.org/10.1080/1061186x.2021.2016773. 

[51] L. Zou, Z. Zhang, J. Feng, W. Ding, Y. Li, D. Liang, T. Xie, F. Li, Y. Li, J. Chen, et 
al., Paclitaxel-loaded TPGS(2k)/gelatin-grafted cyclodextrin/hyaluronic acid- 
grafted cyclodextrin nanoparticles for oral bioavailability and targeting 
enhancement, J. Pharm. Sci. 111 (2022) 1776–1784, https://doi.org/10.1016/j. 
xphs.2022.03.013. 

[52] G. Ren, Y. Li, C. Ping, D. Duan, N. Li, J. Tang, R. Wang, W. Guo, X. Niu, Q. Ji, et 
al., Docetaxel prodrug and hematoporphyrin co-assembled nanoparticles for anti- 

tumor combination of chemotherapy and photodynamic therapy, Drug Deliv. 29 
(2022) 3358–3369, https://doi.org/10.1080/10717544.2022.2147280. 

[53] M. Hashemi, F. Ghadyani, S. Hasani, Y. Olyaee, B. Raei, M. Khodadadi, M. 
F. Ziyarani, F.A. Basti, A. Tavakolpournegari, A. Matinahmadi, et al., 
Nanoliposomes for doxorubicin delivery: reversing drug resistance, stimuli- 
responsive carriers and clinical translation, J. Drug Deliv. Sci. Technol. 80 (2023), 
104112, https://doi.org/10.1016/j.jddst.2022.104112. 

[54] M.M. Silva, R. Calado, J. Marto, A. Bettencourt, A.J. Almeida, L.M.D. Gonçalves, 
Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular 
administration, Mar. Drugs 15 (2017), https://doi.org/10.3390/md15120370. 

[55] A.K. Singla, M. Chawla, Chitosan: some pharmaceutical and biological aspects–an 
update, J. Pharm. Pharmacol. 53 (2001) 1047–1067, https://doi.org/10.1211/ 
0022357011776441. 

[56] E. Baghdan, S.R. Pinnapireddy, B. Strehlow, K.H. Engelhardt, J. Schäfer, 
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