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ARTICLE INFO ABSTRACT

Keywords: Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the
Chitosan nanoparticles efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the
Hyaluronic acid nanoparticles application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as
Egz:ig:ﬁzzy a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in
Immunother?;;y nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS
nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia
and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or
they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and
CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor sup-
pression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The
CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy
and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic
impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further

clinical applications.
1. Introduction genetic and epigenetic alterations is known as cancer [1,2]. Cancer is
asymptomatic in the early stages, and this allows it to gradually grow
A multifactorial and chronic disease that results from significant and disseminate into other parts of the body. Most of the cancer patients
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demonstrate symptoms at the advanced and metastatic stages. Despite
the focus on the diagnosis of cancer, there is still a long way to go, and
currently, the treatment of cancer should be evolved for the better
prognosis and survival of patients. In the initial stages of cancer, the
transformation of normal cells into neoplastic cells occurs to achieve
several remarkable features, including abnormal proliferation, cell
death resistance, and angiogenesis stimulation. At later stages, they
acquire the ability to migrate and disseminate in order to survive in the
body and develop metastatic colonies in secondary sites. These are
known as major hallmarks of cancer and were introduced by Hanahan
and Weinberg [3]. Moreover, immune evasion [4], metabolic reprog-
ramming, inflammation, and genomic instability are considered other
hallmarks of cancer [5]. The molecular profile of cancer has been un-
derstood largely, and despite understanding the role of genomic and
epigenetic alterations in its progression, there are still problems in its
treatment. The lack of effective cancer therapy results from a majority of
factors and cases. Chemotherapy and radiotherapy are the most com-
mon conventional therapies for cancer. However, frequent and long-
term applications of chemotherapy and radiotherapy can cause
changes in the tumor cells and mediate their resistance [6,7]. In fact, the
stimulation of alternative molecular pathways has been responsible for
the resistance of tumors to therapy. Although immunotherapy has
emerged as a new therapy for cancer, the cancer cells have shown the
ability to evade and escape from the surveillance of the immune system
[8,9]. As a result, new kinds of therapies, including nanoparticles,
should be introduced for the eradication of cancer.

Polymer-based nanostructures are among the most applied nano-
materials owing to their advantages, including improving the physico-
chemical features of drugs and targeting the delivery of cargo into the
site of action [10,11]. Therefore, nanocarriers can improve the absorp-
tion of the active ingredients and promote their accumulation at the
tumor site [12]. Both synthetic and natural polymers can be utilized for
the synthesis of polymeric nanostructures. However, natural polymers
are recommended for nanomaterial synthesis owing to their absorption
in the body and biosafety [13,14]. Although nanomaterials have been
developed for precision cancer therapy, the long-term safety of these
structures is of importance. Therefore, the fabrication of nano-
formulations from biocompatible and biodegradable sources can
improve clinical applications. As a result, natural polymers are highly
suggested for the development of nanomaterials, as they are biode-
gradable and their safety has been evaluated [15,16]. Chitosan (CS) and
hyaluronic acid (HA) are biodegradable and biocompatible components
for the synthesis of nanomaterials and can undergo structural modifi-
cation to be activated in response to stimuli and release their cargo. A
variety of formulations have been developed from CS and HA to provide
prolonged release of cargo and improve their potential in the regulation
of cancer progression [17-22]. CS- and HA-modified nanoparticles can
deliver both drugs and genes in cancer therapy, and they are also
promising for the regulation of the immune system [23-29].

In recent years, phototherapy has emerged as a new therapeutic
strategy in the treatment of human diseases, especially cancer. Photo-
therapy can not only mediate the ablation of tumor cells but also in-
crease the sensitivity of tumor cells to traditional therapies. For
stimulation of phototherapy, photosensitizers are used. However, the
accumulation of photosensitizers at the tumor site is low. Therefore,
nanoparticles are explored for the targeted delivery of photosensitizers
for effective cancer suppression. Several nanoparticles, such as gold
nanostructures, have photo-responsive activity. However, the clinical
application of photo-responsive nanoparticles requires them to be
biocompatible. Nanoparticle-mediated phototherapy can accelerate
tumor ablation, and its combination with chemotherapy [30], immu-
notherapy [31,32], and gene therapy [33] can significantly enhance the
potential in tumor suppression. Therefore, the current review focuses on
the application of CS- and HA-based nanocarriers for the specific and
targeted treatment of cancer through stimulation of phototherapy to
mediate tumor ablation. The features of nanoparticles and their ability
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to combine phototherapy with other modalities, including chemo-
therapy and immunotherapy, are also described.

2. The cancer phototherapy: promises of nanoparticles

A long time ago, sunlight-based phototherapy was considered an
approach for the treatment of pathological events, especially skin dis-
eases [34]. The belief originated from human society's worship of the
sun during that era, and this type of therapy was associated with red
light and solar heat [35,36]. Until the middle of the 19th century,
heliotherapy was the only commonly used form of phototherapy [37].
Then, advances in phototherapy started, which led to progress and the
introduction of optics, electricity, and the invention of artificial light
sources [35,37]. A milestone was achieved after the treatment of Lupus
vulgaris with filtered sunlight or the electric carbon arc torch-ultraviolet
radiation that provided the foundation for modern phototherapy. In
1903, the Nobel Prize was awarded to Finson for his work on advanced
and modern phototherapy [37,38]. Then, Theodore H. Maiman devel-
oped coherent and monochromatic lasers in 1927-2007 and utilized
modern phototherapy for the treatment of skin pathologies [39]. Ger-
hard Meyer-Schwickerath evaluated the application of natural sunlight
for the treatment of retinal diseases [40], and this provided the foun-
dations for the utilization of ophthalmology and the clinical application
of phototherapy for neonatal jaundice with the blue light having a range
of 460-490 nm [41]. There are two types of phototherapies, including
photothermal (PTT) and photodynamic (PDT) therapy.

After the discovery of PDT in a fluorescent dye, Dougherty and col-
leagues focused on the application of photosensitizers (PSs) and their
excitation by light, finally introducing them into the treatment of cancer
in the 1970s [42-44]. Currently, there is enough evidence showing that
PDT can be utilized for the treatment of different pathologies, including
tumors, bacterial infections, skin disorders, and others [45,46]. For the
stimulation of PDT, there is a requirement to have three major compo-
nents, including PS, a light source, and oxygen [47,48]. Tumor therapy
by PDT mainly involves the stimulation of direct damage to the cancer
cells through the induction of apoptosis, necroptosis, and autophagy.
Moreover, PDT is vital for suppressing tumor vasculature and mediating
local inflammation to trigger the systemic immunity for cancer therapy.
The absorption of PSs mainly occurs by cancer cells, while PSs are poorly
accumulated in normal cells and metabolized [49]. When the internal-
ization of PSs in the tumor cells occurs, the light source is utilized, and
such irradiation with a specific wavelength can increase the formation of
reactive singlet oxygen to affect the major biological mechanisms and
molecular pathways in cancer therapy. Noteworthy, normal cells are not
affected since they are not sensitive to the detrimental impacts of
reactive oxygen species (ROS) [50-52]. Therefore, for the stimulation of
PDT in the tumor cells, there should be internalization of PSs in the
cancer cells. However, one of the major issues is the lack of specific and
targeted delivery of PSs. In this case, nanostructures have been intro-
duced to deliver PSs into the tumor cells, increasing the potential of PDT
in tumor suppression. The nanoparticles utilized for the PDT should
have high stability in response to radiation, and their photothermal
conversion efficiency should be high to significantly enhance singlet
oxygen formation in cancer therapy [53]. Such an increase in ROS
generation can cause cell death in tumors [54].

Noteworthy, the benefit of nanoparticles is their capability to stim-
ulate PDT without the delivery of PSs. For instance, metal nano-
structures can be loaded in metal-organic framework composites to
catalyze HyO4 into singlet oxygen for stimulation of PDT [55]. More-
over, carrier-free nanostructures have been developed for combining
PDT and chemotherapy to stimulate tumor eradication. In this case, the
presence of NIR can enhance the release of Cy-I to promote the gener-
ation of singlet oxygen for stimulation of PDT [56]. Therefore, the po-
tential of PDT can be significantly improved through the introduction of
nanoparticles [57,58].

Another type of phototherapy is PTT, in which the mechanism of
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action is different from PDT, but it finally causes cell death in tumors.
PTT is mainly preferred over conventional therapeutic strategies due to
the low risk of relapse and high efficiency [59]. In the case of PTT, the
photothermal factors and structures are loaded into nanoarchitectures
that can be PSs or nanoparticles with the ability to cause hyperthermia,
such as gold and iron oxide nanoparticles [60]. Then, optical energy is
absorbed by the nanoparticles, and such exposure to light irradiation
leads to the generation of thermal energy. The mechanism of PTT re-
quires the absorption of light; its transfer occurs through electron-
electron and electron-phonon relaxation, generating hot nanoparticle
lattices. Then, the nanostructure is cooled by phonon-phonon relaxa-
tion, and this promotes heat scattering to enhance the temperature of
cancer cells that are near the nanostructures [61].

Nanostructures can mediate cell lysis and enzyme release during PTT
and hyperthermia, enhancing necrosis and protein denaturation. How-
ever, the application of PTT in the treatment of diseases at the clinical
level has its own problems, the most prominent of which is the low
penetration of light into deep parts of soft tissues and also the cancers
that are present in the bones or those located behind the bones [62].
However, these limitations are being addressed, and in recent years, a
significant explosion has occurred in the application of nanostructures
for PTT induction and improving their efficacy in cancer eradication.
After the accumulation of nanoparticles at the tumor site, the applica-
tion of laser irradiation and stimulation of PTT can cause apoptosis and
necrosis in tumor cells [63]. PSs have poor tissue diffusion, and their cell
internalization is low. Moreover, PSs demonstrate concentration-related
toxicity, which is another issue [64]. Therefore, the application of
nanoparticles allows to reduce the amount of PS utilized while
improving tumor eradication ability. Furthermore, nanoparticles can
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provide a new promise for cancer therapy through the combination of
PTT and chemodynamic therapy [65]. Since phototherapy is a new
treatment modality for cancer and has high potential for being intro-
duced into clinics, the current review will focus on the CS and HA
nanoparticles for stimulation of phototherapy. Fig. 1 demonstrates the
use of PTT and PDT in the treatment of cancer.

3. Chitosan: structural, chemistry and biological evaluation

CS is a source of nitrogen for living terrestrial and aquatic organisms
[66]. CS is present in the cytoskeleton of arthropods, including insects,
spiders, and crustaceans. Moreover, invertebrates' internal structures
contain CS [67]. CS is derived from chitin. Structurally, chitin has been
comprised of § (1 — 4) linked residues of N-acetyl-2-amino-2-deoxy-p-
glucose and 2-amino-2-deoxy-p-glucose [68]. The aqueous ability of
chitin is poor because of the presence of highly crystalline features
resulting from hydrogen binding among the acetamido moieties
[69,70]. When chitin undergoes partial deacetylation, it generates a
water-soluble compound [71,72]. 10 % is the lowest degree of deace-
tylation of chitin, in which its molecular weight is 1-2.5 x 10° Da, and
according to the polymerization degree, there can be about 5000-1000
monomeric residues [73]. The N-deacetylation of chitin with hot alkali
leads to the generation of CS, the major derivative of chitin [74]. The
deacetylation degree of CS can range from 40 % to 98 %, and the mo-
lecular weight is in the range of 5 x 10* Da and 2 x 10° Da [74-76].

When chitin undergoes deacetylation, it generates CS with free
amino functional groups capable of being protonated for improving the
solubility of polymers or undergoing chemical modification for the
generation of new derivatives of CS with improved physico-chemical
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Fig. 1. Chitosan and hyaluronic acid can be used for the development of nanoparticles. These nanoparticles stimulate hyperthermia to induce cell death, known as
photothermal therapy. Moreover, they can increase singlet oxygen to mediate photodynamic therapy. Such effects can also induce the release of DAMPs to induce
immunogenic cell death through the recruitment of dendritic cells and subsequent activation of T cell responses in cancer immunotherapy. The nanoparticles can also
promote the internalization of drugs and genes in the tumor cells to exert a synergistic impact with phototherapy. (Created by Biorender.com).
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and biological features. Currently, there are several kinds of CS de-
rivatives with potential features. A number of CS derivatives possess
cationic features, including trimethyl CS chloride, N-[(2-hydroxy-3-tri-
methyl-ammonium)-propyl] CS chloride, N-propyl-N,N-dimethyl CS, N-
furfuryl-N,N-dimethyl CS, and N-diethylmethylamino CS. These de-
rivatives are cationic, and they display desirable film-forming features.
Moreover, they can develop complexes with anions, and their aqueous
solubility at pH <9 is improved. Their intestinal permeability is high,
and they are biodegradable with mucoadhesive features [77-90].
Another type of derivative is N-acylchitosan, including formyl, acetyl,
propionyl, and other types. They are also biodegradable, and their
hydrogels have high water absorption abilities. They are promising
compounds for the delivery of anticancer drugs, and they have strong
antibacterial activities, among other good features [81,87,91-94]. O-
acetylchitosan, N-carboxyalkyl/aryl CS, thiolated CS, and O-carbox-
yalkyl CS are other derivatives of CS that have been summarized in the
review [95]. All these derivatives share a promising feature, which is
biodegradability, and some other features, including biocompatibility
and important biological mechanisms. Therefore, CS is a promising
compound for the development and functionalization of nanoparticles.

CS nanoparticles cause sustained drug release and can improve the
therapeutic index of compounds and drugs in disease therapy [96]. CS
can also improve the therapeutic index of natural-based compounds
such as curcumin, improving its potential in the treatment of various
pathological events, including cancer, neurological disorders, chronic
wounds, and microbial infections [97]. The cationic feature of CS allows
for the development of nanocarriers complexed with negatively charged
factors, such as genes, in cancer therapy [98]. Moreover, CS-based
nanostructures can cause a combination of chemotherapy and gene
therapy to eradicate cancer. Cinnamon oil can be loaded into CS nano-
particles to enhance levels of caspase-3 and AIP in apoptosis induction
and reduce the growth rate of cancer [99]. The chemotherapy drugs
utilized for cancer therapy, such as paclitaxel and docetaxel, suffer from
low tumor accumulation, which may cause drug resistance [100]. The
application of CS nanoparticles can significantly enhance the cytotox-
icity of these drugs in cancer therapy [15].

CS can be combined with other types of natural polymers for the
development of nanostructures, such as alginate. Such nanocarriers may
undergo further functionalization with ligands targeting the folate re-
ceptor and EGFR through the ionic gelation method to improve drug
delivery ability [101]. CS polymer can be utilized for the development of
nanogels, and due to the features of CS, these nanogels can be pH-
sensitive for a better and more specified release of drugs at tumor sites
[102]. The ability of nanocomposites containing CS has made them
promising factors in apoptosis stimulation, inducing nuclear damage,
and improving the generation of ROS in cancer therapy [103]. Although
the main focus of the current review is on CS-based nanoparticles, it is
worth mentioning that hydrogels can also be developed from CS, and
they are able to cause ferroptosis for the acceleration of cancer immu-
notherapy [104].

CS has been utilized for immunization. A co-formulation of CS and
IL-12 was administered through the intratumoral route into a breast
cancer model to induce immunotherapy and improve long-term tumor-
free survival by 67 % [105]. Moreover, CS/y-PGA nanostructures can
exert synergistic impact with radiotherapy and mediate immunotherapy
in breast tumor by reducing myeloid cells and increasing the CD4 + IFN-
v + population [106]. Regarding the positive charge of CS, it is benefi-
cial for the purpose of gene therapy, and depending on the cargo, it can
reduce (siRNA) and increase (mRNA and pDNA) the expression level of
target genes. CS can improve the stability of the genes and protect them
against degradation. Moreover, CS induces the endosomal release of
genes and enhances their internalization into cells [107].
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4. Chitosan nanoparticles: preparation methods and unique
properties

4.1. Preparation of chitosan nanoparticles

Multiple strategies are utilized for the synthesis of CS nanostructures;
each method has its own benefits, and depending on the situation, one of
these strategies could be used. CS nanostructures were first developed in
1994 by Ohya and colleagues, using emulsifying and crosslinking for the
synthesis of CS nanostructures to provide intravenous delivery of 5-
flourouracil as an anticancer agent [108]. Currently, up to five strate-
gies could be utilized to synthesize CS nanostructures, including iono-
tropic gelation, microemulsion, emulsification solvent diffusion,
polyelectrolyte complexes, and the reverse micellar method [109].
Ionotropic gelation and polyelectrolyte complexes are considered the
main strategies for the synthesis of CS nanostructures since they are
simple and there is no requirement for the application of organic sol-
vents [110]. The ionotropic gelation was first applied by Calvo and
colleagues in 1997, which utilizes the electrostatic interaction between
the amine groups of CS and negatively charged groups of polyanion,
including tripolyphosphate [111]. The dissolution of CS in the acetic
acid is performed, and, in this manner, the stabilizing compounds,
including poloxamer, can be utilized. Then, the addition of polyanion is
performed, and upon mechanical stirring at room temperature, the
synthesis of CS nanostructures occurs.

The microemulsion approach is another strategy for the synthesis of
CS nanoparticles that was reported by De and colleagues in 1999 [112],
which utilizes dissolved CS in an acetic acid solution and a surfactant
dissolved in N-hexane, and then the glutaraldehyde is added to the
surfactant/hexane mixture at room temperature under magnetic stir-
ring. The generation of nanostructures occurs in the presence of sur-
factants. The stirring continues overnight to mediate the process of
crosslinking among the amine groups of CS and glutaraldehyde. The
emulsification solvent diffusion method is another strategy for the
synthesis of CS nanostructures that was first reported by El-Shabouri in
2002 [113], and then it underwent modification by Niwa and colleagues
in 1993 using PLGA [114]. After the injection of an organic phase into
CS solution with poloxamer as a stabilizer, magnetic stirring is per-
formed, and using high-pressure homogenization, an emulsion is ach-
ieved. Then, water is utilized to dilute the emulsion, and because of
organic solvent diffusion into the water, polymer precipitation happens
to generate the nanostructures. The polyelectrolyte complex is another
strategy that is performed by the self-assembly of cationic charged
polymers and plasmid DNA. When the DNA solution is added to the CS/
acetic acid solution, mechanical stirring at room temperature is per-
formed to synthesize CS nanostructures [115]. The reverse micellar
method was first reported by Brunel and colleagues in 2008 [116]. The
toxic agents and crosslinkers are not utilized in this method, and this
strategy can lead to the generation of nanostructures with low particle
sizes. An aqueous solution of CS is added to the organic solvent con-
sisting of surfactant under constant agitation to produce reverse micelles
[117].

4.2. Characterization and modification of chitosan

Drug loading in CS nanoparticles can be performed through incor-
poration and absorption, while drug release from CS nanostructures
results from diffusion, swelling, and erosion [118]. Desorption, diffu-
sion, and release are the factors mediating the release of proteins from
CS nanostructures. The drug release rate from CS nanostructures origi-
nates from the solubility, diffusion, and size of the nanoparticles
[119,120]. The zeta potential is an electrical potential that is determined
by the mobility of charged particles, and it can be positive, negative, or
neutral based on the surface modifications of polymers [121]. CS
nanostructures mainly demonstrate a particle size in the range of
100-400 nm. The stability of CS nanostructures affects the therapeutic
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index of drugs [122]. The agglomerations of particles, bridging floccu-
lation, and coagulation determine the physical stability of CS nano-
structures. Moreover, temperature, pH, formulation composition, and
polymer molecular weight determine the chemical stability of nano-
structures [123,124].

The cellular uptake of CS nanostructures can be determined based on
their size, drug loading and release, zeta potential, and other factors
[125]. Two important methods are utilized for the physical modification
of CS, including physical and chemical modifications [126]. Blending
can be utilized to obtain physical modifications that require the appli-
cation of and mixing of two or more polymers. Physical modification is a
conventional strategy for the modification of CS, and based on the ratio
of polymers, the quality and performance of the blend can be different.
The physical modification is an affordable way to modify CS for certain
applications [127].

PVA, PVP, and PEO are hydrophilic polymers that can be blended
with CS to obtain an oral drug delivery system. The CS and PVA mixture
significantly improves the mechanical features and barrier properties of
CS films [128]. Another method is chemical modification, where the
functional groups should be changed. Chemical modification can be
performed through chemical compounds, radiation, photochemicals,
plasma, and enzymatic grafting strategies [129]. There are amine groups
in CS that can undergo chemical modification for various pharmaceu-
tical applications, and reactions with sulfates, citrates, and phosphates
can improve the stability and drug encapsulation efficiency [130].

5. Chitosan-based nanoparticles for photothermal therapy

In PTT, PSs are exposed to the light to cause hyperthermia, and this
can mediate apoptosis or necrosis depending on the temperature [131].
For the denaturation of proteins or genes, the local temperature should
reach >70 °C [132]. Regarding the ability of nanoparticles in photo-
thermal conversion, they can augment the conversion of light irradiation
to heat. Therefore, the regions surrounding nanoparticle sites are
exposed to photothermal impacts, and the damage is limited to healthy
tissues. Organic dyes have facilitated PTT, but their poor photostability
poses a restriction. As a result, nanostructures such as gold nanoparticles
have been introduced [133]. Gold nanoparticles, especially those with
rod shapes, demonstrate a high ability for optical absorption, and
therefore, they are promising structures for PTT [134]. Researchers have
conjugated CS to gold nanostructures for PTT [135,136]. Gold nanorods
can be stabilized by thiolated CS polymers. Upon the preparation of
cetyltrimethylammonium bromide (CTAB)-passivated gold nanorods,
their surface was functionalized with thiolated CS, and therefore, this
significantly decreased the toxicity profile of CTAB, improving the
biocompatibility of nanostructures. In addition to stability and
biocompatibility, the modification of CS-functionalized gold nanorods
with folic acid was conducted to specifically target the colon tumor cells
upregulating the folate receptor. These ligand/CS-functionalized gold
nanorods demonstrated high photothermal impact under 808 nm NIR
laser irradiation [137].

The ability of CS-modified nanoparticles to perform PTT and tumor
ablation is significant. Upon application of PTT, the CS/hydrox-
ypropyltrimethyl ammonium chloride and CS/hydroxyapatite/black
phosphorus (CS/HC/HA/BP) scaffold eradicated up to 95 % of osteo-
sarcoma cells [138]. Such an impact is highly important for preventing
the recurrence of cancer since incomplete and insufficient cancer ther-
apy is not able to remove all tumor cells, and therefore, the remaining
cancer cells proliferate and form new colonies to cause cancer relapse.
As a result, the PTT can aid in tumor suppression and prevent cancer
recurrence. Moreover, even exposure of CS-functionalized gold nano-
rods to low light intensities can suppress tumor cells in vivo [136].

CS oligosaccharide lactate (COL) is considered a naturally occurring
compound with important biological features, including biodegrad-
ability, biocompatibility, and cationic nature. The depolymerization of
CS leads to the formation of COL, whose average molecular weight is
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5000 Da. The application of COL in medicine and pharmacy has
improved because of its distinct properties, including water solubility,
short chain length, low viscosity, and anticancer function [139,140].
Moreover, owing to the intracellular accumulation and site-specific
delivery potential of COL, it has been utilized for the delivery of anti-
cancer drugs and imaging agents [141-143]. The structures developed
from COL and ZW800-1 NIR fluorophore (COL-ZW) can be utilized for
the PTT of cancer. Furthermore, the theranostic feature of this structure
makes it suitable for imaging. In vivo, the temperature of COL-ZW
enhanced and reached 62.3 °C, and it was kept for 5 min. After a
week of PTT, the tumor size significantly reduced. Moreover, these
structures lack toxicity in normal tissues, and no tumor relapse was
observed after PTT [144]. The poly(vinyl alcohol)/CS layer-by-layer
microneedles have the ability to deliver doxorubicin, and under 808
nm NIR irradiation, they enhance the local temperature up to 12 °C.
Since CS has a pH-sensitive feature, the release of drugs is performed at
the tumor site, and therefore, the efficacy of PTT and chemotherapy is
enhanced [145]. In recent years, the application of microneedles for the
treatment of cancer has increased [146-148]. Microneedles can be
loaded with nanostructures. Therefore, one strategy could be to develop
CS nanostructures for PTT and then load them into microneedles for
cancer therapy.

Without exogenous photoabsorbers, PTT's efficacy in tumor ablation
is insufficient. A high number of endogenous photoabsorbers are ubig-
uitous in the body, and therefore, light energy penetration into deep
tissues is difficult. For effective PTT and hyperthermia, the application
of NIR and exogenous photoabsorbers is suggested. The nanostructure-
based photoabsorbers have demonstrated high NIR light absorption
and photostability. As a result, various classes of nanostructures,
including gold, iron oxide, and melanin nanocarriers, among others,
have been developed for PTT [149-152]. The gold nanodot swarms were
utilized to develop gold nanostructures functionalized with glycol CS.
Gold nanoparticles were complexed with glycol CS through interaction
with the amine groups of CS. Exposure to 808 nm laser irradiation
enhanced the temperature to 55 °C. The exposure of such nanostructures
to thiolated molecules impairs the particle structure of nanocarriers, and
then they are no longer able to mediate PTT and convert the light into
heat. Moreover, these CS-modified nanocarriers can cause PTT and
immunogenic cell death [153].

For improving the ability of tumor ablation, a combination of PDT
and PTT has been utilized. Moreover, the CS nanofibers can be devel-
oped to cause both PDT and PTT. CS nanofibers have amine groups and
are capable of absorbing gold nanostructures for PTT and chlorin e6 for
PDT. CS nanofibers have a catonic nature in which they discharge the
gold nanostructures attached to a motif with a pH-responsive feature
through electrostatic repulsion. Then, CS nanofibers selectively bind to
the cancer cells with anionic charge through electrostatic interaction
[154]. Since PSs are loaded into the CS nanoparticles for PTT, the
encapsulation efficiency of these nanostructures should be high. CS
nanostructures usually demonstrate high encapsulation efficiency, for
instance, 80.2 % for doxorubicin as an anticancer drug [155].

Trimethyl CS (TMC) can be achieved through the alkylation of CS.
TMC is positively charged and enhances cell membrane penetration and
lyso-endosomal escape via the proton sponge mechanism. Moreover,
TMC can interact with negatively charged materials for the purpose of
drug delivery or be utilized for the modification of nanostructures
[156-158]. PEG-functionalized TMC-based nanoarchitectures have
shown high potential in gene delivery for cancer elimination [159].
IR780 or bufalin was loaded into TMC nanoparticles through ionic
gelation. At the next step, the functionalization of nanostructures with
human serum albumin was performed through electrostatic absorption.
The resulting nanocarriers demonstrated a 30 nm particle size and high
photothermal impact. Moreover, they increased mitochondrion locali-
zation and promoted phototoxicity. TMC-based nanostructures highly
accumulated in the tumor site and impaired 98.46 % of cancer invasion
(Fig. 2) [160].
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Fig. 2. The effect of the irradiation on the cancer site accumulation of TMC-based nanostructures. a) Treatment schedule; b) The distribution of nanoparticles; b) Ex
vivo imaging; d) The fluorescent intensity; e) The deep penetration in tumor tissue; f) The synthesis of nanoparticles and their mechanism of action. Reprinted with

permission from Elsevier [160].

The Pluronic F127 application has been approved by the FDA, and
this synthetic structure is considered a thermo-sensitive block co-poly-
mer that can be utilized for the encapsulation of IR780 dye. The Pluronic
F127 can be deployed for the synthesis of self-assembled micelles
through its amphiphilic triblock structure consisting of PEO (poly-
(ethylene oxide)), PPO (poly-(propylene oxide)), and PEO (poly-
(ethylene oxide)) to deliver the hydrophobic molecules [161-163]. The
nanocapsules were prepared from Pluronic and CS, and then their
functionalization with folate was conducted to improve their ability in
the selective delivery of IR780 to ovarian tumor cells overexpressing the
folate receptor, causing PDT and PTT and imaging (theranostic appli-
cation) [164]. The CuySe nanostructures were functionalized with CS,
and they displayed high stability, water solubility, thermostability, and
the ability to convert NIR light into heat. They demonstrated high
cellular uptake in the tumor cells, and exposure to 808 nm laser irra-
diation enhanced their antitumor activity up to 400 % to mediate
apoptosis through intrinsic and extrinsic pathways [165].

An important aspect of CS-based nanostructures utilized for PTT is
their ability in imaging. Several imaging strategies have been combined
with CS nanostructures during cancer therapy, including computed to-
mography, magnetic resonance imaging, dark field imaging, and fluo-
rescence imaging [166-170]. Among the various kinds of imaging
techniques, fluorescence imaging has emerged as a promising modality
because of its sensitivity, simple conduction, and affordability
[171-175]. Furthermore, red fluorescence imaging compounds have
high priority in imaging applications since the red emission can elimi-
nate the interference of bio-autofluorescence and provide deep pene-
tration into biosystems [176-178]. In this regard, Bi»S3 nanoparticles
were loaded in CS nanospheres for PTT and fluorescent imaging appli-
cations. These nanostructures can provide green and red luminescence
emission, and there is no need to apply fluorescent dye because of the
crosslinking present between CS and glutaraldehyde. The photothermal
efficiency of nanoparticles in 808 nm laser irradiation was high, and
they caused optical imaging-guided PTT in cancer therapy (Fig. 3)
[179].

CuS quantum dots can also be applied for imaging and PTT of cancer.
However, the targeting ability and biocompatibility of such structures
are poor. Therefore, functionalization and modification of CuS quantum
dots by CS and folic acid can be performed to increase the potential of
imaging and PTT in cancer [180]. Therefore, CS-modified

nanostructures have high potential in PTT and the imaging (theranostic)
of cancer [181]. The anticancer activity of CS-modified nanostructures
for PTT has been evaluated using 2D monolayers. However, in order to
improve the insight into their cancer suppression potential, 3D spher-
oids of cancer could be utilized that mimic the tumor microenvironment,
and even in this case, they demonstrate high potential in tumor elimi-
nation [182].

6. Chitosan-based nanoparticles for photodynamic therapy

3D crosslinked networks of polymer chains are known as hydrogels,
which can absorb large amounts of water. Physical or chemical cross-
linking agents can be utilized for the development of hydrogels [183]. In
recent years, much attention has been directed towards the application
of physically crosslinked gels that can occur through hydrogen bonding,
hydrophobic association, and chain aggregation. In chemical cross-
linking, covalent bonds are required. However, one of the main re-
strictions of chemical crosslinking agents is their poor biocompatibility,
limiting their biomedical applications [184,185]. There are several
types of hydrogels, including solid molds, liquids, membranes, and
films. The solvent evaporation can be utilized for the generation of films,
possessing the benefits of both hydrogels and films [185]. In this regard,
ZnPc liposomes and CS were combined on a hybrid matrix in PDT in-
duction. The hydrogel films function as delivery systems, and then ZnPC
liposomes were embedded into the hydrogels. This system augmented
PDT and reduced the viability of tumor cells by >95 % [186]. In addition
to the application of CS for the functionalization of nanoparticles,
several studies loaded CS into nanostructures. In an experiment, CS and
garlic were loaded into CdO-TiO2 nanostructures and used for cancer
therapy via the PDT action [187]. The synthesis of CS nanoparticles can
be performed through various methods; one of them is the combination
of CS and TPP with a mass ratio of 5:1 in 1 % v/v acetic acid at pH 5.5,
and then obtaining nanostructures with a size of 200-300 nm for PDT
induction and elimination of 98 % of tumor cells [188].

One of the most common PSs with wide application in clinics is 5-
aminolevulinic acid (5-ALA) [189,190]. Protoporphyrin IX (PpIX) is
the metabolic product of 5-ALA that is also an efficient and potential PS
and has the ability to evoke mitochondria in cancer cells [191,192]. The
application of 5-ALA through topical or systemic methods for the in-
duction of PDT and the elimination of cancer cells has increased
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Fig. 3. a-h) CLSM images of the HepG2 cells after incubation with BSA-Bi;S3-CG-PEG nanostructures; i) The synthesis of nanoparticles and then their modification
with chitosan and PEG for PTT induction and imaging, providing the theranostic application of nanocarriers. Reprinted with permission from Elsevier [179].

[193-198]. However, the cellular uptake and tumor accumulation of 5-
ALA are low because of its hydrophobic nature and non-specificity to-
wards cancer cells [199,200]. As a result, nanoparticles have been
developed for the delivery of 5-ALA, including micelles, gold nano-
structures, and mesoporous silica nanocarriers [201-204]. CS nano-
structures have been applied for the delivery of IR780 and 5-ALA for PTT
and PDT, respectively. These nanocarriers were deployed for noninva-
sive oral administration, and they demonstrated high stability at an
acidic pH, confirming their potential and promises for the oral delivery
of such drugs. This combination causes a synergistic impact to mediate
both PTT and PDT in increasing ROS levels, causing oxidative damage,
and suppressing tumorigenesis (Fig. 4) [205].

Lipid nanostructures were developed from stearic acid and glycerol
monostearate, and then they were loaded and functionalized with
chloroaluminum phthalocyanine and CS, respectively. The particle size
of nanostructures was in the range of 131.5-231.5 nm, and their zeta
potential was between —24.30 and + 19.96 mV. These nanoparticles
displayed encapsulation efficiency of >96 %, and despite being non-
toxic for the fibroblasts (showing their biocompatibility), they sup-
pressed the survival rate of melanoma [206]. Another kind of PS for the

induction of PDT is porphyrins and their derivatives [207,208]. The
porphyrins demonstrate several properties, making them suitable for the
PDT. The chemical purity of porphyrins is appropriate, and because of
their high triplet state, they can increase reactions with molecular ox-
ygen to promote the generation of singlet oxygen. Moreover, porphyrins
lack action and cytotoxicity in the dark, and they can be cleared rapidly
from the body [209-212]. The biopolymeric films were prepared from
CS, PEG, and gelatin, and then the porphyrins were loaded into these
biofilms. These PS-loaded CS-based films were able to enhance the
generation of singlet oxygen, and they suppressed cervical cancer [213].

Although PDT is considered a potential strategy for cancer suppres-
sion, it has the ability to induce a hypoxic environment, which stimu-
lates the prodrugs [214]. In this case, liposomes have been introduced
for inducing PDT and stimulation of AQ4N as a hypoxia-activated pro-
drug in breast cancer therapy [215]. Liposomes were functionalized
with CS, and TH302 as a hypoxia-activated prodrug was embedded into
the nanostructures. Such nanoparticles possessed high biocompatibility
and targeting abilities. Moreover, they have fluorescence imaging ca-
pacity, induce PDT, and impair tumorigenesis in breast cancer [216].
Therefore, similar to the CS nanostructures for PTT, these nanoparticles
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Fig. 4. The imaging of 5-ALA/IR780/CS nanoparticles in the tumor tissues. a) IR780 fluorescence images and b) fluorescence analysis; ¢) Ex vivo fluorescence images
and d) fluorescence analysis of major organs and tumors; e) IR780 fluorescence imaging of the small intestine; f) The structures used for the synthesis of nanoparticles
and loading drugs for oral delivery. Reprinted with permission from Elsevier [205].

utilized for PDT can also provide imaging. Notably, CS nanostructures
can provide both MRI and PDT. The conjugation of CS with octadecanoic
acid (OA) generates glycolipid polymers (CS-OA) with an amphipathic
nature. Then, conjugation of gadopentetic acid (GA) to CS-OA was
performed to produce Gd-CS-OA nanostructures for MRI. These poly-
mers self-assemble into the micellar nanostructures in an aqueous so-
lution, and chlorin e6 molecules can be loaded into their hydrophobic
cores. Via the EPR effect, they accumulate in tumor sites, and MRI can be
used to provide new insights regarding metabolism and the targeted
delivery of cancer cells. The laser irradiation can induce PDT to impair
cancer survival (Fig. 5) [217]. Furthermore, CS-based nanostructures
possess stealth features [218], and they can be utilized for the treatment
of various cancers, including gastrointestinal tumors [219]. Table 1 is an
overview of CS-based nanostructures for cancer phototherapy. Fig. 6 is a
summary of CS-based nanoparticles in cancer PDT and PTT.

7. Hyaluronic acid: structural, chemistry and biological
evaluation

John W. Palmar and Karl Mayer first isolated HA from bovine vit-
reous humor [240,241]. HA is abundantly found in the extracellular
matrix (ECM), and its physiological functions have been of importance
for the systems and organs in the body. HA can also be found in synovial
fluid, intra-articular cartilage, and aqueous humor. HA has an anionic
and non-sulfated nature; this non-protein polysaccharide is comprised of
disaccharides of d-glucuronic acid (GlcA) linked with N-acetyl-glucos-
amine (GlcNAc) by a glucuronidic (1 — 3) bond. There are two types of
HA: low-molecular-weight HA (20-500 kDa) and high-molecular-weight
HA (>1 MDa). Moreover, the HA with a few kDa of molecular weight is
known as the oligosaccharide HA [242-245]. The low-molecular-weight
HA can improve tissue regeneration and penetrate the epidermal layer of
skin tissue to transport the bioactive compounds for accelerating healing
[246,247]. HA can serve as an antiadhesive compound during abdom-
inal surgical resection. Owing to the large size, hygroscopicity, and
viscoelasticity of HA, it has the capacity to be utilized for the regulation
of skin hydration, osmotic balance, and ECM [248].

HA also has the ability to absorb water, even 1000 times higher than
its volume [249]. Vital physiological and biological mechanisms,

including proliferation, cell adhesion, and even differentiation, can be
controlled by HA. The application of HA in tissue engineering has been
improved, especially along with alginate, collagen, and gelatin. HA
possesses a few osteogenic features for bone repair, but it can be used as
a delivery system for bioactive compounds, where it binds to the CD44
receptor on the surface of cells to regulate molecular-related pathways
[250].

Other kinds of nanostructures can be functionalized with HA to
improve their targeting ability, such as cubosomes, and they selectively
target tumor cells with upregulation of CD44 [251]. The important
biological mechanisms participating in tumorigenesis and cancer
metastasis, such as EMT, can be targeted by HA-functionalized Fe3O4
nanocubes [252]. Because HA has the ability to bind to the CD44 re-
ceptor, the nanoparticles can be designed in a way to provide both im-
aging and therapy for tumors [253]. The yeast p-glucan particles can be
functionalized with HA to deliver doxorubicin, and through binding to
the CD44 receptor, the accumulation of drugs increases, impairing
cancer progression [254]. The polymeric micelles functionalized with
HA can deliver paclitaxel, and such nanoparticles provide targeted and
sustained release of chemotherapy drugs while their size is low and
appropriate for tumor internalization and cancer eradication [255].
Similar to the CS that can be utilized for the development of hydrogels,
HA also has the ability to be used in hydrogel development. The HA-
based hydrogels have the potential to accelerate immunotherapy
[256], suppress cancer relapse [257], and theranostic applications (de-
livery and bioimaging) [258].

HA has shown great promise for cancer immunotherapy. Redox-
sensitive nanohydrogels have been developed from HA to deliver
oncolytic viruses. Upon release, the oncolytic virus undergoes replica-
tion and finally stimulates apoptosis in tumor cells [259]. In this effort,
copper-doped mesoporous polydopamine (CP) nanozyme was func-
tionalized with HA and triphenylphosphine (TPP) to enhance oxidative
damage and mediate apoptosis. Moreover, such nanosystems can stim-
ulate damage-associated molecular patterns due to their mild photo-
thermal activity and mediate tumor eradication [260]. The potential of
HA in gene delivery has been promising for tumor suppression, as
conjugation of PD-L1 siRNA into HA and targeting CD44-overexpressed
tumor cells can improve siRNA potential in PD-L1 downregulation and
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Fig. 5. a) In vivo distribution of DIR and Gd-CS-OA/DIR in 4 T1 tumor-bearing mice model. b) Representative ex vivo organ distribution of DIR and Gd-CS-OA/DIR at
48 h post injection. ¢) Quantification (mean fluorescent intensity) of ex vivo organ distribution. Data were presented as standard deviation (n = 3). d) The distribution
of Ce6 and Gd-CS-OA/Ce6 (NPs/Ce6) at the tumor site at 24 h post injection. Scale bar: 100 pm. e) In vivo T1 weighted MRI images of 4 T1 tumor bearing mice model
obtained at different time points after intravenous administration of Gd-CS-OA/Ce6. Reprinted with permission from Elsevier [217].

promote T cell-related responses in cancer eradication [261]. The
modification of nanoparticles with HA can selectively target tumor cells
and enhance the delivery of the p53 gene [262]. HA can be deployed for
the synthesis of hydrogels and particles that are important for gene
delivery. The next sections evaluate the great potential of HA-based
carriers in PTT and PDT.

8. Rational for hyaluronic acid application in biomedicine and
pharmaceutics

Recent years have witnessed the application of HA and its derivatives
as delivery systems for steroid drugs, polypeptides, protein drugs, and
antitumor therapeutics [263,264]. HA-based delivery systems

significantly improve drug retention at the administration site, diminish
the requirement for frequent administrations, improve the pharmaco-
kinetic profile, and decrease the adverse impacts [265]. For entering the
therapeutics into the cells, HA and polycation conjugates improve serum
stability, and through binding to related receptors on the surface of cells,
they mediate receptor-mediated endocytosis, increasing their penetra-
tion through the cell membrane [266]. The HA utilized for biomedical
applications is obtained through microbial fermentation [267]. More-
over, HA extraction can be performed from roster combs and umbilical
cords [268]. The depolymerization of HA can occur in batch cultures
through enzymatic reactions or applications of physical and chemical
degradations [269-271]. The linkage of HA to drugs can occur chemi-
cally. There are a high number of benefits regarding the application of
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Table 1
CS-based nanostructures for cancer phototherapy.
Nanostructure Therapy Highlights Refs
RGDyK-functionalized PDT Targeting the glioblastoma [220]
CS-wrapped cells upregulating integrin
upconversion receptor
nanostructures High phototoxicity at 980
nm irradiation
CS-LDH PDT Improving the stability of [221]
nanocomposites PSs to increase PDT
Coating with CS increases
PDT activity
Glycol chitosan PDT The presence of [222]
nanostructures intracellular reductive
condition causes the
improved photoreactivity of
nanoparticles
EPR effect
Causing PDT-mediated
tumor suppression
CS/TPP PDT Loading curcumin in [223]
nanostructures nanostructures and specific
targeting of EGFR receptor
PDT induction
Increasing ROS generation
Decreasing survival of
tumor cells
Lipid-coated CS PDT High cytotoxicity mediated [224]
nanostructures by PDT and reducing
viability of tumor cells
Glycol CS PDT The compact structure of [225]
nanostructures nanocarrier after cellular
internalization decreases to
enhance fluorescence signal
and promote generation of
singlet oxygen during
irradiation
Improving blood circulation
and increasing targeting
ability
Carboxymethyl CS PDT Co-delivery of crose Bengal [226]
nanostructures and oxymatrine and release
in response to glutathione
PDT induction and
increasing singlet oxygen
levels
CS hybrid nanospheres ~ PDT 180 nm size with spherical [227]
PTT shape
Stimulation of
hyperthermia
Increasing ROS levels
Alginate-folic acid- PDT The detection of intestinal [228]
functionalized CS neoplasms by
nanostructures photodynamic effect
PEG/CS/iron oxide PDT Increasing heat and singlet [229]
hybrid PTT oxygen generation under
nanoassemblies NIR irradiation to induce
damge in tumor cells
CS oleate-coated PLGA  PDT Association of indocyanine [230]
nanostructures green with the
nanoparticles
Reduction in viability of
tumor cells
CS-modified gold PTT A probe for the detection of [231]
nanorods microRNA miR-21 in breast cancer
detection PTT effect in killing tumor
cells
CS/fucoidan-coated PTT 51.87 nm size and [232]
nanorods increasing temperature to
54.4 °C after laser
irradiation
PTT-mediated tumor killing
CS oligosaccharide- PTT The strong absorption peak [233]

functionalized gold
nanorods

at 838 nm and ability of PTT
induction to suppress breast
tumor
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Table 1 (continued)

Nanostructure Therapy Highlights Refs

Glycol CS/iron oxide/ PTT
polypyrrole Chemodynamic
nanoclusters

The accumulation in tumor
site and enhancing ROS
generation through
inducing Fenton reaction
Limiting the side impacts
Modification with folic
acid-conjugated CS
Increasing cellular uptake
Functionalization with CS
and folic acid

PTT effect at 808 nm laser
irradiation and reducing
viability of cervical cancer
Modification of
nanostructures with
galactosylated CS

Loading nedaplatin in the
nanoparticles to mediate
PTT and chemotherapy
Apoptosis induction

High colloidal stability and
high doxorubicin loading
Drug release in response to
pH and NIR light

PTT and reducing growth of
tumor cells

Delivery of 5-flourouracil
with 72 % loading
efficiency

Combination of
chemotherapy and PTT by
irradiation in hepatocellular
carcinoma therapy

[234]

Palladium PTT
nanoparticles

[235]

Gold nanorods PTT [236]

Mesoporous silica PTT
nanostructures Chemotherapy

[237]

CS/carbon dot hybrid PTT
nanogels Chemotherapy

[238]

CS-functionalized gold ~ PTT
nanocarriers Chemotherapy

[239]

Abbreviations: RGDyK, Pyropheophorbide A and c; CS, chitosan; LDH, layered
double hydroxide; PS, photosensitizer; EPR, enhanced permeation and reten-
tion; TPP, tripolyphosphate; EGFR, epidermal growth factor receptor; PDT,
photodynamic therapy; PTT, photothermal therapy; PEG, polyethylene glycol;
PLGA, poly lactic-co-glycolic acid.

HA-drug conjugates, HA-associated colloidal carriers, and HA-
functionalized nanocarriers. The most prominent benefit of HA is that
it improves and makes it easier to associate drugs with polysaccharides,
either directly or through a carrier. Consequently, it resolves solubility-
related issues. HA can improve the half-life of drugs in plasma and
reduce their clearance, demonstrating a similar function to PEG [272].
In the case of cancer therapy, the application of HA can improve the
specific targeting ability. HA-drug conjugates or HA-functionalized
carriers demonstrate an EPR effect vital for improving the distribution
of drugs in cancer tissues [273,274]. Regarding the upregulation of
CD44 on tumor cells, circulating cancer cells, and stem cells, HA func-
tionalization significantly improves the possibility of cancer targeting
[275,276]. Furthermore, HA can be utilized to reverse multidrug resis-
tance mediated by hyperactivation of P-glycoprotein [277]. The bio-
logical activities of HA have made it a promising compound for delivery
systems. In fact, when the nanostructures are functionalized with HA,
not only their targeting ability is improved, but also a number of bio-
logical activities is increased [278]. HA fragments have the ability to
regulate inflammation, tumor metastasis, and drug resistance
[279,280]. The fragments of HA with 25-50 disaccharide units
demonstrate accumulation at the inflammation site, and through func-
tioning as danger signals, they can reflect oxidative stress on tissue
[281]. The macrophage expression of chemokines, cytokines, and
growth factors can be altered by HA oligosaccharides, and these impacts
reduce the proliferation of endothelial, fibroblast, and smooth muscle
cells [282]. Therefore, HA and its derived or functionalized nano-
structures could be significantly utilized in biopharmaceutics.



Z. Wang et al.

Folic acid

Chitosan oligosaccharide

International Journal of Biological Macromolecules 273 (2024) 132579

IR780
v

Chitosan
nanoparticles

Gold <-. nanoparticles
nanoparticles 1
------ + Chitosan
Folate th)‘
receptor 'l,fb(b m
11 M r { Ll
TR ERIT TR
o
Endocytosis

Irradiation

O

808 nm NIR
irradiation

High
Growth = T
Hyperthermia 95% cancer suppression plocompstbEy
cell killing in vivo
l ability
Cell Intrinsic pathway of apoptosis
death

Fig. 6. The application of CS nanoparticles for cancer PDT and PTT. Different kinds of nanostructures can be utilized. Some of them, such as gold nanoparticles, have
the ability to absorb light, so there is no need to utilize photosensitizers. Functionalization with ligands such as folic acid can increase internalization in tumor cells
through endocytosis, and this causes hyperthermia in cell death induction. Moreover, chitosan oligosaccharide nanocarriers impair tumorigenesis in vivo. In
photodynamic therapy, the nanoparticles increase the levels of ROS to induce mitochondrial dysfunction and mediate apoptosis. (Created by Biorender.com).

9. Hyaluronic acid-based nanoparticles for photothermal
therapy

The modification of nanostructures with HA has been considered a
promising way to improve the potential of PTT in tumor eradication.
Similar to CS-modified nanostructures, HA-functionalized nano-
structures can also be utilized for the eradication of cancer. HA was
conjugated to boron dipyrromethene (BODIPY), which could self-
assemble in the generation of BODIPY-HA nanocarriers. These nano-
structures performed the actions of PTT and PDT by increasing tem-
perature at the tumor site and promoting ROS generation [283]. The
benefit of such a combination is not only related to the synergistic
impact, but sometimes the cancer cells change the expression levels of
heat shock proteins to obtain resistance to phototherapy. Therefore,
combination therapy can prevent resistance to phototherapy. Gold
nanostructures have a local surface plasmon resonance effect that can be
utilized for light absorption and scattering [284]. The change and con-
version of light by gold nanostructures can increase the temperature,
making them promising candidates for PTT [285]. Gold nanostructures
were prepared by glutathione, and then their shielding with SiOy was
performed to increase the biocompatibility index. Moreover, HA modi-
fication of nanocarriers was performed to improve the targeting ability
towards tumor cells overexpressing CD44. The photothermal conversion
efficiency of nanostructures was 47.6 %, and within 200 s, these nano-
carriers increased the temperature of tumor site from 38.5 °C to 57.6 °C,
causing photothermal ablation of gastrointestinal cancers [286]. HA can
be utilized for the modification of various nanostructures for the purpose
of cancer PTT. Reduced graphene oxide (rGO) can result from GO
through the application of chemical, thermal, or electrochemical
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methods. rGO is preferred to GO for the purpose of cancer therapy
because of its large surface area, high drug loading efficiency, NIR light
photothermal conversion efficiency, and capacity to be conjugated with
other compounds and structures [287,288]. Both doxorubicin and IR780
was loaded on rGO nanostructures, and their functionalization with HA
was performed. These structures released the cargo at a pH similar to the
pH of the tumor microenvironment. Moreover, they increased the tem-
perature at the tumor site, and the upregulation of HSP70 and ROS was
observed. These nanostructures have high biocompatibility, and they
can stimulate apoptosis and necrosis in tumor cells [289]. GO is a 2D
carbon material possessing a graphitic lattice and having various oxygen
functional groups, including epoxy, hydroxyl, or carboxyl groups,
capable of absorbing NIR light [290,291]. When GO is transformed into
rGO, its ability to absorb NIR increases due to recovering the aromatic
lattice of this material, improving the photothermal potential of this
structure [292]. The generation of rGO is mainly performed by the
application of hydrazine hydrate [293,294]. However, such a kind of
rGO is toxic [294], and therefore, new strategies for its application
should be followed. The response of HA nanostructures to the light de-
pends on the cargo that they carry. Cy5.5-conjugated HA nanomaterials
were loaded with copper sulfide (CuS). The fluorescence potential of
CuS was quenched by loading in the nanostructures. The presence of
hyaluronidase in the tumor microenvironment can degrade the nano-
composite to release CusS for emitting fluorescent signals, and CuS causes
hyperthermia via PTT, and is also interesting for photoacoustic imaging
[295]. In another experiment, HA-hybridized polyaniline (HA-PANI)
nanomaterials were developed for specific targeting of cancer cells
upregulating CD44 receptor. The nanostructures were prepared using
one-step oxidative polymerization. HA with a negative charge was
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conjugated into PANI as a cationic polymer. Their average hydrody-
namic diameter was 100 nm, and after exposure to an 808 nm NIR laser,
they induced PTT and suppressed tumorigenesis [296].

Two problems regarding rGO should be addressed, including the
toxicity of the agents used for its synthesis and the poor water solubility
and selectivity towards tumor cells. Green synthesized rGO can be
functionalized with HA to increase cancer therapy. The green reduction
of GO can be performed by r-ascorbic acid, and functionalization with
HA can increase the specificity towards tumor cells, targeting the tumor
cells overexpressing CD44, increasing tumor accumulation, and causing
PTT in tumor ablation (Fig. 7) [297].

HA-functionalized nanostructures can be internalized in cancer cells
through CD44-mediated endocytosis [298]. In treating breast cancer,
the HA-functionalized platinum nanostructures show a high ability to
bind cells and a high PTT in eliminating tumors [299]. Furthermore,
there are two kinds of HA with low and high molecular weights. Both
can be utilized for the synthesis and modification of nanostructures, and
the final impact on the PTT could be evaluated. The internalization of
nanostructures modified with high molecular weight HA into cancer
cells is higher compared to those functionalized with low molecular
weight HA. Besides, the PTT impact of nanostructures modified with
high molecular weight HA is higher compared to low molecular weight
HA [300].

Similar to CS, HA is also applied in hydrogel synthesis. Although the
scope of this paper is on the application of HA-based nanostructures in
cancer therapy, it is worth mentioning that HA-based hydrogels can be
utilized for suppressing the relapse of cancer. Injectable hydrogels were
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synthesized from HA, and they were embedded with gold nanostructures
and ATRA to impair cancer stem cells (CSCs). The application of HA can
be utilized to target CD44 upregulation on CSCs [301]. A micellar
nanostructure was synthesized from HA and oleic acid with cystamine
for ATRA loading that is redox-sensitive. CS was utilized for the syn-
thesis and stability of gold nanostructures, causing cancer PTT. Then,
both ATRA micellar nanostructures and gold nanocarriers were incor-
porated into CS to develop HA hydrogels. The HA-based hydrogels can
cause the differentiation of CSC through the release of gold nano-
structures and ATRA, suppressing cancer relapse and invasion. These
hydrogels stimulate PTT and impair tumorigenesis through the eradi-
cation of CSCs, disrupting relapse and invasion (Fig. 8) [302].

HA nanostructures can be ROS-responsive for PTT-mediated cancer
ablation. HA nanocarriers have a ROS-responsive thioketal moiety
linker that is present between methotrexate and HA. Because they are
hydrophobic and stack up against each other, these nanostructures were
used to deliver IR780. These nanocarriers are ROS-responsive, have high
targeting ability, and can cause tumor suppression up to 70.95 % [303].
This provides the notion that HA-modified nanostructures can be
developed in a way to be responsive to both endogenous and exogenous
nanocarriers. CuS nanostructures were loaded with doxorubicin, and GO
was conjugated to these nanocarriers through the COOH functional
group. To improve the targeting ability of cancer cells, the modification
of nanoparticles with HA was performed to enhance CD44-targeting.
These nanoparticles can extravasate the blood vessels after intrave-
nous administration, and they release the cargo in response to pH and
NIR to enhance the intracellular and nucleus accumulation of drugs for
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Fig. 7. Preparation and characterization of HA-rGO. Schematic representation of the reduction and functionalization of rGO with HA-g-PMAO and its application in
cancer photothermal therapy (a). FTIR spectra of rGO, HA-g-PMAO, and HA-rGO (b). DLS size distribution of GO, rGO (LAA stabilized), and HA-rGO (c). Reprinted

with permission from Elsevier [297].
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Fig. 8. Anti-recurrence and anti-metastasis inhibition in vivo (n = 3). a) Illustration of the therapeutic schedule of the recurrence-metastasis mouse model. b) Tumor
images (scale bar: 0.5 cm). ¢) Photographs of lung metastatic nodules (scale bar: 0.5 cm). The metastatic nodules were labeled with red circles. d) Tumor volume
growth curves after tumor implantation, subsequent surgery, and therapy. e) The number of lung metastatic nodules in each group. f) Final mean tumor weights. All
data are shown as mean + SD. *p < 0.05, **p < 0.01. g) Schematic illustration of composite hydrogel preparation, tumor inhibition, and anti-recurrence/metastasis
through eliminating both CSCs and non-CSCs by combining differentiation of ATRA and PTT of AuNPs. Reprinted with permission from Elsevier [302].

cancer therapy [304].

Nanocarriers can be utilized for imaging and PTT simultaneously. In
a study, after the preparation of PEI-Ag nanostructures, hydrothermal
synthesis was performed to increase Fe3O4@Ag seeds. Then, their
modification with PEI-SH was conducted. The nanoparticles were
functionalized with HA through EDC/NHS to increase their targeting
ability. These nanostructures were internalized by tumor cells, and they
not only induced PTT but also provided MR and CT imaging of cancer
[305]. Such ability for PTT and imaging can be obtained through the
conjugation of HA to quantum dot nanostructures to provide theranostic
applications [306]. The conjugation of HA to different kinds of nano-
structures, such as GO, can be performed to induce PTT [307]. There-
fore, such experiments demonstrate that functionalization of
nanostructures with HA can significantly increase their internalization
into tumor cells overexpressing CD44, which enhances the PTT impact
in tumor ablation [308-310].

10. Hyaluronic acid-based nanoparticles for photodynamic
therapy

Biomedical imaging has achieved significant progress owing to ad-
vances in the chemistry of molecular imaging nanoprobes. However, it is
vital to develop molecular imaging nanoprobes that can specifically
target cancer cells. Due to its high resolution and lack of radiation
exposure requirements, MRI has gained widespread application
[311-314]. PLGA nanostructures were applied for the delivery of
chlorin €6, and their functionalization with HA was performed. The
presence of HA provides the carboxylate groups capable of providing
chelation with gadolinium ions for MRI imaging. These nanostructures
can specifically target the CD44 receptors upregulated on the surface of
tumor cells, and they delay cancer progression [315]. Tumor hypoxia
refers to a situation in which the oxygen supply is not enough, which can
commonly occur in solid tumors [316,317]. The hypoxic and normoxic
tissues display heterogeneity in their TME, and therefore, the pressure of
oxygen can be utilized for tumor-specific delivery [318,319]. As a result,

hypoxia-responsive nanogels are utilized for imaging and PDT. AZO-CDI
is utilized as a hypoxia-responsive linker and can be prepared by HA-
functionalized groups. When the oxygen level is high enough, the
quenching of the fluorescence of Ce6 conjugated to the nanoparticles is
performed, and even after irradiation, the ROS generation is low.
However, when hypoxia is present in TME, the dissociation of nano-
particles occurs, and the fluorescent activity of Ce6 is achieved to
enhance ROS generation after irradiation. Owing to the modification
with HA, they specifically target the tumor cells, upregulating CD44,
and their intracellular accumulation in cancer is high [320].

In an experiment, HA-ceramide nanostructures were developed for
the co-delivery of paclitaxel and hypocrellin B. The nanoparticles sup-
pressed tumorigenesis (lung cancer) in vitro and in vivo. They were able
to selectively target tumor cells (binding to the CD44 receptor), and
through stimulation of PDT, they exerted a synergistic impact with
chemotherapy [321]. The delivery of chlorin e6 by the HA nano-
structures can cause PDT [322]. The HA nanostructures were self-
assembled through the chemical conjugation of aminated 5p-cholanic
acid, polyethylene glycol (PEG), and black hole quencher3 (BHQ3) to
the HA polymers. The dialysis method was utilized to load Ce6 into HA
nanoparticles with a loading efficiency of 80 %. The nanoparticles were
stable and could rapidly internalize into cancer cells. The hyaluronidase
in the cytoplasm of cancer cells degraded HA nanoparticles to release
Ce6 into cells. In vivo experiments confirmed the accumulation of
nanostructures at the tumor site, and laser irradiation was able to pro-
duce fluorescence due to the Ceb6 release, generating single oxygen for
PDT [322].

It can be understood from the studies that, despite the promising
potential of PDT in tumor suppression, the low specificity towards
cancer cells is one of the main problems of PDT, which can be solved
through functionalization of nanostructures with HA [323]. The conju-
gation or loading of hydrophobic drugs into HA-based nanostructures
can increase the water solubility, and until now, several kinds of drugs,
including doxorubicin, paclitaxel, and PSs, have been conjugated to HA
[324,325]. The functionalization of HA with glycodendron and
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pyropheophorbide-a (Ppa) was performed to prepare nanostructures
with high cellular uptake in tumor cells capable of causing mitochon-
drial dysfunction and increasing ROS generation upon laser irradiation.
These nanoparticles showed a dendritic structure, and they had a higher
molecular weight compared to the linear polymer, causing high cellular
uptake and prolonged blood circulation. These nanostructures can
disrupt the growth of tumor cells, and the elimination of almost 60 % of
tumors upon irradiation was observed [326]. Due to the unique features
of carbon-based nanocarriers, significant attention has been paid to their
functionalization with HA. HA-derived carbon dots can be prepared
using the hydrothermal method, and they can target tumor cells over-
expressing CD44. These nanocarriers are also PSs, and under 650 nm
irradiation, they display photoluminescence emission, providing imag-
ing and PDT of tumor cells [327].

Nanoparticles can impair CSCs in tumor therapy. Ce6-Olaparib mi-
celles were functionalized with HA, and they can impair cancer pro-
gression through stimulation of PDT and prevention of DNA damage
repair. These nanoparticles can stimulate immunogenic cell death since
PDT can increase ROS generation. Then, maturation of dendritic cells
occurs to reduce the infiltration of MDSCs and overcome CSC resistance
[328]. The PDT potential of HA-ceramide nanostructures increases
when both paclitaxel and hypocrellin B are loaded into the nanocarriers
[329]. This is because these drugs can also exert anticancer activity, and
therefore, PDT-mediated tumor ablation is improved. In recent years,
the application of stimuli-responsive nanocarriers for cancer eradication
has improved significantly [330]. The intelligent drug delivery systems
can respond to endogenous and exogenous stimuli, including tempera-
ture [331,332], pH [333,334], redox [335,336], light [337,338] or
enzyme [339,340], that are ideal candidates for delivery applications.
These nanocarriers minimize premature drug release, and they can
release cargo at the tumor site in exact response to the site and time
[341].

Gold nanostructures functionalized with HA are promising
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candidates for the treatment of breast cancer through stimulation of
both PDT and PTT, and they can respond to triple stimuli. Gold nanorods
were functionalized with HA, bearing the hydrazine and thiol groups
through Au—S bonds. Then, their chemical modification through
conjugation with 5-aminolevulinic acid (ALA), Cy7.5, and an anti-HER2
antibody onto the HA moiety was performed to induce PDT, specific
targeting, and fluorescence imaging. These nanostructures demon-
strated uniform size and desirable dispersion, and they could respond to
pH, redox, and HAase (enzyme). The internalization of nanostructures
into the tumor cells significantly increases due to the modification of the
HER2 and CD44 receptors. Moreover, NIR irradiation can significantly
enhance ROS generation and heat, causing PDT and PTT in breast cancer
ablation. The nanoparticles demonstrated a 1.9 h half-life, and their
accumulation at the tumor site was 12.8 %. Besides, the nanostructures
caused PDT and PTT along with imaging, lacking adverse impacts
(Fig. 9) [342]. Fig. 10 is an overview of using HA-based nanoparticles in
cancer phototherapy.

11. Chitosan- and hyaluronic acid-based nanoparticles in
phototherapy and immunotherapy

11.1. Chitosan nanoparticles

Immunotherapy is the process of immune system regulation aimed at
improving the reactions of immune cells and, therefore, reversing the
mechanisms responsible for immune evasion [343,344]. Immune
checkpoint inhibitors, cytokines, cancer vaccines, and CAR-T cells,
among others, can be utilized for immune system induction [345].
However, the function of the immune system has been restricted because
of poor responses and a lack of targeted delivery of immunomodulators.
The combination of immunotherapy and phototherapy has been used for
cancer eradication. The hollow CuS nanostructures can be coated with
CS, and then they assemble with immunoadjuvant
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Fig. 9. In vivo antitumor study in nude mice xenograft models with MCF-7 breast cancer. a) Photothermal photographs of the mice received different treatments:
PDT (GNR-HA — ALA/Cy7.5-HER2 + 635 nm NIR irradiation), PTT (GNR-HA — ALA/Cy7.5-HER2 + 808 nm NIR irradiation), PDT + PTT (GNR-HA — ALA/Cy7.5-
HER2 + 635 nm and 808 nm NIR irradiation), PDT + PTT ® HER2 (GNR-HA — ALA/Cy7.5 + 635 nm and 808 nm NIR irradiation). b) Typical digital photos of mice
bearing tumors at different treatment stages. Changes in c) tumor temperature, d) tumor volume, and e) tumor weight of mice received different treatments. Inset:
Representative photograph of excised tumors. (n = 5, *p < 0.05, 1 — p = 90.2 %; **p < 0.01, 1 — B = 83.2 %). f) H&E-stained micrographs of tumor tissues from
different groups; g) Schematic representation of the processes for preparing GNR-HA — ALA/Cy7.5-HER2 with triple-responsive drug release and its application for
HER2/CD44 dual-targeted and fluorescence imaging-guided combined PDT/PTT treatment of breast cancer. (I) GNR-HA — ALA/Cy7.5-HER2 accumulates at the
tumor site through the EPR effect. (I) GNR-HA — ALA/Cy7.5-HER2 is recognized by CD-44 and HER2 receptors and then internalized into tumor cells. (III) The
release of ALA is triggered by an acidic intracellular microenvironment. HA is degraded by GSH and HAase. The Cy7.5, GNRs, and ALA liberated from the nano-
platform are used for (IV) fluorescence imaging, (V) PTT, and (VI) PDT of HER2-positive breast cancer, respectively. Reprinted with permission from Elsevier [342].
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Fig. 10. Hyaluronic acid can functionalize different kinds of nanostructures, including gold nanorods, carbon nanotubes, and PLGA nanoparticles. The benefit of gold
and carbon nanoparticles is their ability to convert light; therefore, there is no need for the application of photosensitizers. They can release their cargo in response to
pH, and through stimulation of hyperthermia and increasing ROS levels, they induce apoptosis. Moreover, the internalization of HA-functionalized nanoparticles in
tumor cells occurs through binding the CD44 receptor and mediating endocytosis. (Created by Biorender.com).

oligodeoxynucleotides consisting of CpG motifs. The laser irradiation
causes the breakdown of nanoparticles, and they reassemble and are
transformed into polymer complexes capable of tumor retention for the
purpose of cancer immune oncology. The immunoadjuvants accelerate
the immune reactions, while PTT-induced cancer ablation delays
tumorigenesis and reduces the tumor antigens [346]. Although the
concept of this paper is on CS nanoparticles, it should be briefly
mentioned that CS-based hydrogels can cause PTT, and through the
delivery of STING agonists, they transform the immunosuppressive TME
into a tumoricidal microenvironment [347]. This concept can guide
future studies for the application of CS nanoparticles in a way to impair
immunosuppressive TME.

11.2. Hyaluronic acid nanoparticles

HA-based micellar nanostructures have been utilized for the co-
delivery of IDO inhibitors, known as NLG919 and Ce6 as PS. These
nanocarriers cause PDT to mediate immunogenic cell death, and
through the delivery of NLG919, they regulate the tryptophan metabolic
pathway in tumor ablation. Moreover, singlet oxygen generation by PDT
of nanoparticles stimulates an immune response to induce the matura-
tion of dendritic cells. Immunosuppressive TME can be reversed by
NLG919 by enhancing the activity and cytotoxicity of T cells and
decreasing the infiltration of Treg cells [348]. In the new strategies, the
nanostructures could be applied for triple therapy using chemotherapy,
immunomodulation, and phototherapy. Polydopamine nanostructures
were functionalized with HA, and applied for the delivery of ursolic acid
and astragaloside IV. The aqueous solubility and targeting ability of
loaded drugs increased with HA-functionalized nanostructures.
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Moreover, they induce PTT, mediate immune system, and suppress
proliferation and invasion of lung tumor cells through triple therapy
[349].

However, there are still some other aspects that should be considered
in this combination therapy. The macrophages present in the TME
possess a high ability for tumor acceleration when they have M2 po-
larization [350]. Recent studies have highlighted the role of M2-
polarized macrophages in accelerating cancer progression [351,352].
Therefore, CS and HA nanostructures should be used for inducing M1
polarization in macrophages. Moreover, the PD-L1/PD-1 axis has been
considered as a mechanism for causing immune evasion [351,353,354],
while the efficacy of CS and HA nanoparticles for phototherapy and
immunotherapy in regulating PD-1 should be evaluated.

12. Chitosan- and hyaluronic acid-based nanoparticles in
phototherapy and chemotherapy

12.1. Chitosan nanoparticles

Drug resistance has been a major reason for therapy failure among
patients [355]. Studies have shown that there are two categories of
resistance, including acquired and intrinsic drug resistance. In both
types, the stimulation of alternative molecular mechanisms participates
in tumorigenesis. As a result, the combination of phototherapy and
chemotherapy has been suggested to overcome drug resistance. CS
nanoparticle complexes with tetraphenylchlorin as PS were used for the
delivery of mertansine or cabazitaxel. CS nanoparticles containing 10 %
of side chains consisting of PS had high drug loading ability and sta-
bility. These nanostructures demonstrated high cytotoxicity against
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breast cancer and combined chemotherapy and PDT [356]. The car-
boxymethyl cellulose and CS nanostructures were loaded with poly-
pyrrole nanostructures and 5-flourouracil. These nanostructures had a
shell of carboxymethyl cellulose crosslinked with disulfide, providing
the redox-sensitive feature of nanocarriers. The presence of GSH, acidic
pH, and NIR irradiation caused the release of cargo from these nano-
particles, and after internalization in liver cancer cells, they impaired
tumorigenesis and reduced the growth of tumor [357]. For loading both
PSs and chemotherapy drugs into CS nanoparticles, the mesoporous
structure of CS and electrostatic interaction are beneficial [358]. The
ionic gelation of tripolyphosphate was utilized to develop CS nano-
structures, and 6-mercaptopurine was loaded into gold nanostructures
and encapsulated by CS nanocarriers. The encapsulation efficiency of
nanocarriers was suggested to be 57 %, and through a combination of
PTT and chemotherapy, they significantly decreased the progression and
survival of breast cancer [359].

12.2. Hyaluronic acid nanoparticles

HA-based nanostructures can combine phototherapy and chemo-
therapy for synergistic suppression of tumors. The oxygen-deficient
molybdenum oxide hybridized HA hollow nanostructures known as
MoOs-x@HA HNSs can be prepared through a one-stop strategy, and the
HA moiety provides the specific and selective targeting of tumor cells,
while the MoO3-x component provides the TME-responsive feature of
nanocarriers for phototherapy. Under 808 nm laser irradiation, these
nanocarriers stimulate PDT and chemotherapy, and they can be specif-
ically absorbed by the tumor cells for phototherapy and imaging
simultaneously [360].

Carbon nanotubes (CNTs) have been recognized as rolled graphene
sheets, with both ends providing hollow cylindrical structures. CTNs can
be single-walled or multi-walled, and their properties are various. CNTs
can be functionalized with HA for the treatment of colon cancer. Single-
walled CNTs are functionalized with HA and Ce6. These nanocarriers
internalize in the colon tumor cells, and through the application of
chemotherapy and PDT, they sufficiently suppress cancer [361]. Fe3O4
nanostructures can be coated with porous carbon, and their function-
alization with HA can be conducted. The preparation of these nano-
structures can be performed through the solvothermal method, and the
reason for functionalization with HA is to improve cancer selectivity,
cause tumor site PTT, and facilitate chemotherapy [362].

One of the most common drugs in cancer therapy is doxorubicin
[363]. However, the dysregulation of biological and molecular path-
ways in the tumor cells causes doxorubicin resistance. HA nanoparticles
can deliver both doxorubicin and IR780 with high internalization in
breast tumor cells to cause both PTT and chemotherapy for tumor sup-
pression [364]. Therefore, the application of CS and HA nanostructures
in combination with chemotherapy and phototherapy can introduce
new concepts in tumor eradication. These kinds of strategies provide
significant insights into the application of nanostructures. The first
insight pertains to the heightened intracellular accumulation of anti-
cancer drugs, which can significantly escalate their cytotoxicity. More-
over, the application of nanoparticles for phototherapy can cause DNA
damage and cell death, which are the main mechanisms for enhancing
the chemosensitivity of tumor cells.

13. Chitosan- and hyaluronic acid-based nanoparticles in
phototherapy and gene therapy

13.1. Chitosan nanoparticles

A new type of cancer treatment modality has emerged: gene therapy.
Chemotherapy is a conventional cancer treatment modality, and its
frequent application can cause cancer cells to become resistant.
Although the introduction of the immunomodulation concept signifi-
cantly improved the insight towards the treatment of cancer, and it was
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considered an alternative for chemotherapy or in combination, further
analysis and investigations revealed that the tumor cells can also stim-
ulate the oncogenic mechanisms causing immune evasion. Furthermore,
TME interactions can cause immunosuppression and impair the immune
system's function. Therefore, researchers have introduced gene therapy
to target specific mechanisms and pathways in cancer treatment. Gene
therapy may alter resistance to other therapies by changing a specific
pathway. However, the major pathways and mechanisms in gene ther-
apy should be targeted, such as those related to DNA damage, cell death,
and the progression of tumor cells. Despite the significant hope of gene
therapy in the treatment of cancer, it was further demonstrated that this
kind of therapy requires more modification since the genetic tools have
off-targeting and, during blood circulation, they may undergo degra-
dation, providing insight for the introduction of nanostructures in the
delivery of genetic tools [365].

CS-modified gold nanostructures have the potential to suppress
cancer. Researchers have utilized polycationic CS nanospheres to func-
tionalize PEGylated gold nanorods. In addition to their high cellular
uptake and causing both PTT and gene therapy, such nanocarriers can
mediate imaging, providing promises for theranostic application [366].
5-minolevulinic acid (ALA) is one of the clinically used PSs for treating
oral cancer [367]. However, ALA has difficulties in fusion with the
cancer cell membrane, and the tumor cells can develop resistance to ALA
[191,368]. The CS/tripolyphosphate (TPP) nanostructures have been
utilized for the delivery of ALA and MTHFD1L-shRNA. They were 145
nm in size, and this co-delivery significantly enhanced the antitumor
activity through apoptosis induction, ROS overgeneration, and impaired
cancer progression [369]. In addition, the upregulation of GBAS can
accelerate the progression of oral tumors. Loading ALA in CS nano-
particles was performed through the ionic crosslinking method, and the
loading of shRNA was conducted by electrostatic interaction. These
nanostructures demonstrated a spherical structure with good dispersion
and stability. The combination of PDT and gene therapy significantly
improved oral tumor suppression [370]. CS nanoparticles are promising
candidates for gene therapy since they have a cationic charge and can
form complexes with negatively charged genes. Furthermore, func-
tionalizing DNA-complexed CS nanoparticles with HA can enhance their
specificity for inducing gene therapy and phototherapy.

13.2. Hyaluronic acid nanoparticles

The process of gene therapy and phototherapy has also been per-
formed by the application of HA nanostructures. The gold nanorod-
PGED was functionalized with HA for improving blood circulation
time and increasing efficacy in photoacoustic imaging. The results
demonstrated that cloaking with HA improves the stability, biocom-
patibility, and circulation time of nanocarriers. Moreover, there are
Schiff base bonds in the structure that are pH-responsive and can
enhance endosomal and lysosomal escape. Moreover, this nanostructure
can cause PTT and gene therapy [371]. Table 2 provides an overview of
HA nanostructures for cancer phototherapy.

14. Clinical application of chitosan and hyaluronic acid

In recent years, the clinical applications of CS and HA have
increased. These agents are biocompatible and biodegradable. Notably,
HA has been utilized for the purposes of cancer radiotherapy and
immunotherapy. The clinical application of CS for wound dressing has
been confirmed. CS has also been used for weight loss in clinical studies.
The AGE (advanced glycation endproducts) levels demonstrate associ-
ation with the process of carcinogenesis. Therefore, regulation of AGE
levels can change the process of tumorigenesis. CS has been applied for
the regulation of AGE levels in prostate cancer (phases I and II)
(NCT03712371), and therefore, future studies can provide more insights
regarding the application of CS in the modulation of AGE levels in other
kinds of tumors. To alleviate cancer pain in outpatients, oral morphine is
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nanostructures through
modification with low
molecular weight HA
Aggregation at acidic TME
Suppressing cancer growth
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Table 2 Table 2 (continued)

The application of hyaluronic acid nanostructures in cancer phototherapy. Nanostructure Therapy Highlights Refs
Nanostructure Therapy Highlights Refs HA nanogels PTT Size of 77 nm and good [384]
HA-functionalized Chemotherapy ~ pH-sensitive drug release, [372] Chemotherapy  colloidal stability

PLGA magnetic PTT accelerated cellular uptake Endocytosis in tumor cells
nanocarriers and endosomal escape and Synergistic tumor suppression
mediating cisplatin sensitivity HA-functionalized PDT Inducing hyperthermia and [349]
by PTT gold nanorods PTT increasing singlet oxygen
Self-assembled HA PTT 808 nm laser irradiation [373] generation to cause PTT and
nanostructures causes PTT and specific PDT
targeting of tumor cells Enhancing cellular uptake
upregulating CD44 in bladder and mediating endo/
cancer therapy lysosomal escape
HA-functionalized PTT NIR laser irradiation mediates ~ [374] HA-functionalized PTT Citric acid-coated magnetic [385]
carbon nanotubes PTT to induce apoptosis and liposomes Chemotherapy  nanostructures have been
reduce proliferation of tumor loaded in aqueous cores,
cells while docetaxel was added to
HA-functionalized PTT Delivery of 10-hydroxycamp-  [375] the hydrophobic layers of
hollow Prussian Chemotherapy  tothecin and induction of PTT liposomes
blue nanostructures Specific binding to CD44 High cellular uptake
receptor PTT and chemotherapy-
Injectable hydrogel PTT Response to the acidicpHand ~ [376] mediated tumor suppression
based on BiySes Chemotherapy  sustained delivery of HA nanostructures PDT Delivery of Ce6 and DHA in [386]
nanosheets and HA doxorubicin Chemotherapy  cancer PDT and
NIR irradiation mediates PTT chemotherapy
MoS,-HA-DTPA-Gd/ PTT PTT-mediated tumor ablation [377] Suppressing microtubule
Gef nanostructures Chemotherapy  Apoptosis induction deolymerization
Downregulation of PI3K/Akt Impairing cell cycle
Suppressing proliferation progression
Magnetic HA micellar PTT Internalization in cancer cells [378] Increasing ROS generation
nanoparticles Chemotherapy  through receptor-mediated HA nanogels PDT Delivery of doxorubicin in [387]
MRI endocytosis Chemotherapy  cancer chemotherapy
Converting light into heat Ce6 stimulates PDT
Stimulation of PTT-mediated Providing MRI
tumor ablation HA-modified hollow PDT pH-responsive feature [388]
HA-RGD mesoporous Chemotherapy ~ High PTT impact [379] mesoporous silica Chemotherapy ~ 170 nm size
silica-coated gold PTT High drug loading (20.16 %) nanostructures High drug loading for
nanorods pH-enzyme sensitive doxorubicin and ICG
Targeting CD44 and integrin PDT and breast cancer
receptors for endocytosis in suppression
tumor cells HA-Ceb6- PDT Co-delivery of PS and DNA [389]
HA-modified PTT Stimulation of PTT and [380] Hemin@DNA- Release of Ce6 in response to
mesoporous Chemotherapy  causing chemotherapy Protamine GSH
carbon-copper through doxorubicin delivery nanostructure Increasing oxygen generation
peroxide Stimulation of chemodynamic to ameliorate hypoxia
therapy through Cu®* release Apoptosis induction
and catalysing OH in the HA-modified PDT More efficiency that non- [390]
presence of HyO, mesoporous silica modified nanostructures
HA-coated lipid PTT Delivery of doxorubicin in [381] nanocarriers Specific targeting of CD33
nanocarriers Chemotherapy  breast cancer chemotherapy receptor and increasing PDT
Internalization in tumor cells High levels of HA can impair
through endocytosis PDT
TPGS/HA dual PTT Zi?j:r;;;::sgif [382] AbbreYiations.: HA, hyaluronic fi({id; PTT, phototh.m?m.al; PLGA, Poly(‘Lactic-co-
functionalized PLGA  Chemotherapy  mitochondria due to Glycolic Acid); Gd, gadolinium; Gef, gefitinib; DTPA, diethylene-
nanostructures functionalization with HA triaminepentaacetic acid; MRI, magnetic resonance imaging; TPGS, a-Toco-
and TPGS to deliver paclitaxel pheryl polyethylene glycol succinate; MGO, Fe304-graphene oxide; TME, tumor
Upregulation of caspase-3 and microenvironment; PDT, photodynamic therapy; Ce6, chlorin e6; DHA, doco-
downregulation of survivin sahexaenoic acid; ICG, indocyanine green; PS, photosensitizer; Ato, atovaquone.
and MMP-9
Suppressing tumor . . . .
progression in vitro and in used, and as an alternative, future studies can also utilize nasal ketamine
vivo spray with CS for the amelioration of cancer pain (NCT02591017).
p-Cyclodextrin-cholic  PTT Loading camptothecin in Notably, CS has the potential to be utilized for the prognosis of cancer
acid-HA polymer Chemotherapy  nanostructures to cause patients. The pH-sensitive CS can be used to investigate the cell
coated Fe30y4- chemotherapy . . .
graphene oxide MGO responds to the NIR and detachment ratio to be used as a prognostic tool in lung tumors
nanocarriers causes PTT to accelerate (NCT04218188). Even after axillary dissection for breast cancer, a
apoptosis mixed solid of poloxamer, gelatin, and CS can be used as a safe anti-
HA-modified gold PTT Improving the [383] adhesive factors (NCT02967146). Moreover, glycated CS can be
nanorods Chemotherapy  biocompatibility of

considered an immune stimulant to induce antigen-presenting cells and
enhance the uptake of tumor antigens, triggering the patient's immune
system (NCT03202446). On the other hand, HA has been extensively
deployed during radiotherapy (NCT00882232, NCT01787630,
NCT02165020). These studies highlight the fact that CS and HA have
made their way into the clinic. However, the CS- and HA-based nano-
material applications in cancer therapy are in their early stages. For
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future clinical studies, the efficacy of CS- and HA-based nanomaterials in
tumor suppression should be compared, along with investigating their
route of administration.

15. Conclusion, limitations, and clinical perspectives

The introduction of phototherapy for cancer treatment can signifi-
cantly improve the potential for tumor eradication. Despite the signifi-
cant promises made by phototherapy, there are still limitations that can
be problematic in clinical trials and also reduce the potential of pre-
clinical investigations. The process of phototherapy can be mediated
through two strategies, including the delivery of PSs or the application
of nanostructures such as gold nanorods that can respond to the irra-
diation. A significant problem with the nanostructures is their low
biocompatibility. Even for a highly efficient nanostructure for
phototherapy-mediated tumor ablation, clinical application is suggested
when biocompatibility and long-term safety have been highlighted and
confirmed. Therefore, the synthesis of nanoparticles from green and safe
sources is suggested, or further functionalization is recommended. The
present review highlights the potential of CS- and HA-synthesized or
functionalized nanoparticles in cancer phototherapy. The CS and HA
nanostructures can deliver PSs to the cancer site, improving photo-
therapy. The CS improves the biocompatibility and stability of nano-
structures, while HA specifically binds to the CD44 receptor, providing
specific cancer targeting. Therefore, it is suggested to use both CS and
HA for the functionalization of nanostructures in cancer phototherapy. A
number of structures, including gold nanorods and quantum dots,
possess photo-responsive activity, and therefore, their modification with
CS and HA has been beneficial in improving their potential in PDT and
PTT induction. Furthermore, the current studies have evaluated the
potential of CS- and HA-mediated phototherapy in combination with
chemotherapy, immunotherapy, and gene therapy. Despite significant
efforts, there are still some limitations that should be addressed, and the
suggestions for future studies are as follows:

A) Until now, multiple types of nanostructures, including organic
and inorganic materials, have been modified with CS and HA for
phototherapy and combination therapy. However, nanoparticles
with the highest possibility of clinical application are preferred.
Lipid-based nanoparticles, especially liposomes, have been
commonly applied in clinical trials; the most recent one is the
application of liposomal nanoparticles in the Pfizer vaccine.
Therefore, more focus should be directed towards the modifica-
tion and synthesis of novel kinds of liposomes based on CS and
HA to facilitate phototherapy and combination therapy in cancer
patients.

Recently, there has been an acceleration in the application of
biomimetic nanostructures in cancer therapy [391-394]. The
rationale for the application of biomimetic nanoparticles is their
stealth properties and their ability to mimic the features and
properties of normal cells. Therefore, they are not considered
foreign structures. One of the potentials that have been ignored in
the application of CS and HA nanoparticles in phototherapy is the
lack of their functionalization and coating with membranes
derived from tumor cells, macrophages, and other sources to
improve their circulation, biocompatibility, and internalization
in tumor cells. Therefore, this strategy should also be applied in
further studies.

Researchers have suggested the application of CS and HA nano-
structures for combination immunomodulation and photo-
therapy. Current studies have a simple analysis of immune-
related reactions, evaluating T cell function and cytotoxicity, as
well as transforming immunosuppressive TME into a tumoricidal
TME. However, a significant factor inducing immune evasion has
been ignored: the PD-L1/PD-1 axis. The pharmacological and
genetic inhibitors of PD-L1 can be utilized for a combination of

B

—

C

~

18

International Journal of Biological Macromolecules 273 (2024) 132579

immunomodulation and phototherapy. Moreover, factors causing
immunogenic cell death, such as sulfasalazine, can be applied
along with PSs for delivery to induce immune reactions, and PDT
can also accelerate the activation of the immune system in a
synergistic way. The M2 polarized macrophages impair immune
function, and therefore, the CS and HA nanoparticles could be
utilized for the reeducation of macrophages and phototherapy.
For the combination of chemotherapy and phototherapy, efforts
have shown promise in this combination cancer therapy. How-
ever, some of the major mechanisms have been ignored. The
regulation of P-glycoprotein as a factor mediating chemo-
resistance requires investigation. Moreover, the major biological
mechanisms dysregulated during cancer progression and drug
resistance are apoptosis, ferroptosis, autophagy, and DNA dam-
age repair mechanisms that a combination of phototherapy and
chemotherapy should focus on targeting. Regarding the regula-
tion of autophagy, it has both carcinogenic and tumor-suppressor
functions [395,396], and therefore, its regulation requires more
caution.

E) The problems for cancer gene therapy are internalization and
protection against degradation, among others. The siRNA and
shRNA have been delivered by CS and HA nanostructures for a
combination of phototherapy and gene therapy. The capacity of
these nanostructures for the encapsulation of the CRISPR/Cas9
system in more powerful gene therapy and phototherapy should
be evaluated.

In recent years, self-assembled nanostructures have received
much attention in the treatment of cancer [363,397,398].
Therefore, more studies regarding the ability of self-assembled
nanoparticles from CS and HA or their functionalization with
these polymers for phototherapy should be performed. Moreover,
it is suggested that a comparison of phototherapy efficacy with
different classes of nanostructures modified with CS and HA for
cancer therapy be provided to further improve the knowledge
and insights towards such nanocarriers in cancer therapy.
Further investigation regarding the endocytosis of CS and HA
nanostructures by tumor cells are needed, and the impact of size,
shape, and zeta potential on their internalization and efficacy of
phototherapy should be evaluated.
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The key points and directions for the future studies can be summa-
rized as 1) emphasizing on the development of more novel stimuli-
responsive CS and HA nanostructures, 2) further functionalization
with membranes obtained from cancer cells, macrophages and other
cells to endow the stealth property, 3) loading natural products with
anticancer activity in these nanoparticles to sensitize tumor cells to
phototherapy, 4) loading other kinds of genetic tools in these nano-
structures including the CRISPR/Cas9 system, 5) highlighting other
factors in immune system modulation and combination with photo-
therapy such as PD-L1/PD-1 axis, M2 polarized macrophages, cancer-
associated fibroblasts and recruitment of dendritic cells, and 6)
revealing the internalization of the nanoparticles and providing more
insights regarding increase in the crossing over cell membrane via
endocytosis to better deliver the PSs.

Based on the search on ClinicalTrials.gov, both CS and HA have been
applied in clinical studies for the treatment of cancerous and non-
cancerous diseases. However, the interesting point is that there is no
report regarding the application of CS and HA nanoparticles for photo-
therapy in cancer. Therefore, it can be suggested that, owing to the ef-
ficacy and biocompatibility of HA and CS nanostructures, they can be
utilized for phototherapy in cancer suppression. However, the clinical
application of nanostructures requires their large-scale production,
which can affect the physico-chemical properties of nanoparticles. It is
quite difficult to yield nanoparticles with determined physico-chemical
features in large-scale production, as they may aggregate or change in
size, zeta potential, and other characteristics. These changes can


http://ClinicalTrials.gov

Z. Wang et al.

ultimately affect the biocompatibility and efficacy of patient treatment.

There are several benefits to using CS and HA nanoparticles in
regulating tumor cells' response to chemotherapy, modulating the
immunosuppressive tumor microenvironment, and phototherapy. PSs
have a poor pharmacokinetic profile, but nanostructures improve tumor
accumulation. Nanoparticles, on the other hand, should be biocompat-
ible and biosafe, which HA and CS can provide. With the help of CS and
HA nanoparticles, phototherapy can be combined with other common
treatments, such as anticancer drugs and immunomodulatory drugs, to
improve the effects in the area around the tumor.

Regarding the clinical application, there are still several points that
require further clarification. The biological safety of CS and HA nano-
particles should be evaluated accurately, and the mechanisms respon-
sible for their clearance and their degradation into other structures
should be understood. At the clinical level, these nanoparticles should be
produced at high levels, and therefore, the large-scale production of
these structures may affect several of their properties, including particle
size, zeta potential, drug and gene loading, and aggregation, affecting
the therapeutic index. Therefore, a simple method for the large-scale
production of such nanoparticles should be adopted.
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