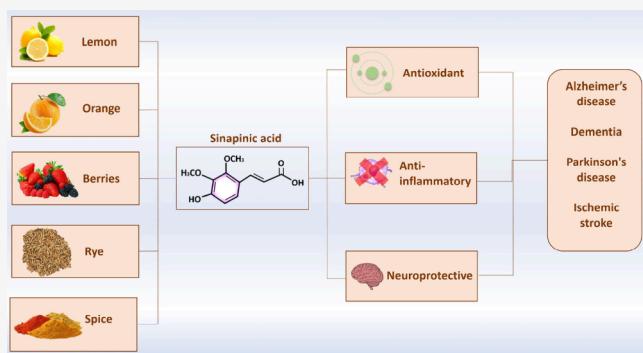


Pharmacological Activities and Molecular Mechanisms of Sinapic Acid in Neurological Disorders

Mahan Farzan, Behnaz Abedi, Iman Bhia, Atossa Madanipour, Mahour Farzan, Mohammad Bhia, Ava Aghaei, Iman Kheirollahi, Mahzad Motallebi, Hossein Amini-Khoei,* and Yavuz Nuri Ertas*

Cite This: *ACS Chem. Neurosci.* 2024, 15, 2966–2981

Read Online


ACCESS |

Metrics & More

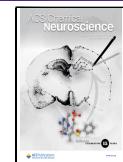
Article Recommendations

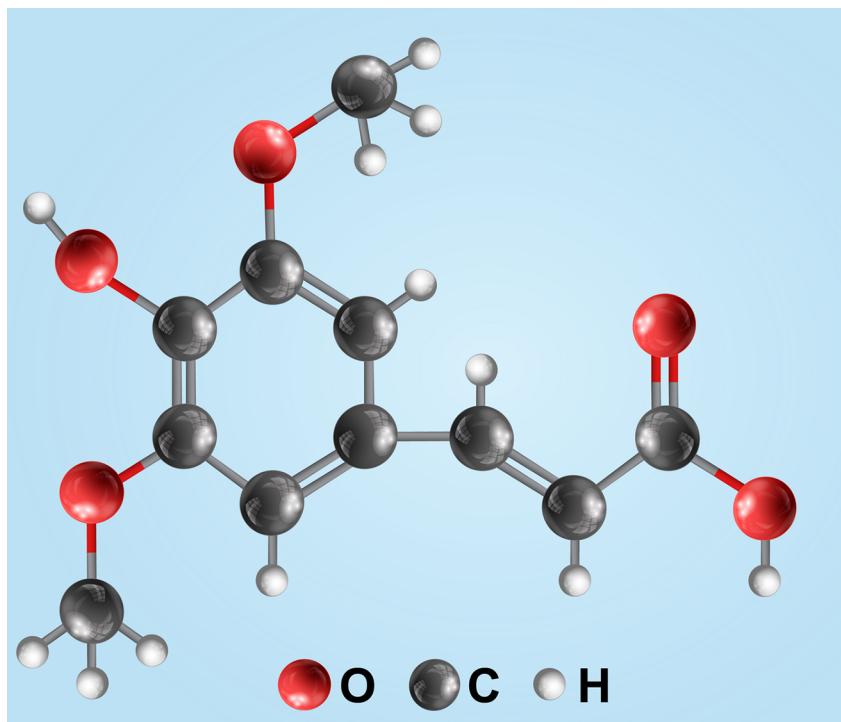
ABSTRACT: Sinapic acid (SA) is a phenylpropanoid derivative found in various natural sources that exhibits remarkable versatile properties, including antioxidant, anti-inflammatory, and metal-chelating capabilities, establishing itself as a promising candidate for the prevention and treatment of conditions affecting the central nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), ischemic stroke, and other neurological disorders. These effects also include neuroprotection in epilepsy models, as evidenced by a reduction in seizure-like behavior, cell death in specific hippocampal regions, and lowered neuroinflammatory markers. In AD, SA treatment enhances memory, reverses cognitive deficits, and attenuates astrocyte activation. SA also has positive effects on cognition by improving memory and lowering oxidative stress. This is shown by lower levels of oxidative stress markers, higher levels of antioxidant enzyme activity, and better memory retention. Additionally, in ischemic stroke and PD models, SA provides microglial protection and exerts anti-inflammatory effects. This review emphasizes SA's multifaceted neuroprotective properties and its potential role in the prevention and treatment of various brain disorders. Despite the need for further research to fully understand its mechanisms of action and clinical applicability, SA stands out as a valuable bioactive compound in the ongoing quest to combat neurodegenerative diseases and enhance the quality of life for affected individuals.

KEYWORDS: Sinapic acid, neurological disorder, hydroxycinnamic acids, Alzheimer's disease, herbal medicine, Parkinson's disease

1. INTRODUCTION

Neurodegenerative disorders (NDs) are the leading causes of disability and also account for the second-leading cause of mortality worldwide.¹ NDs are a heterogeneous group of complex human health issues that affect millions of people, mostly the elderly, globally, and they represent various patterns of neuron loss in the motor, sensory, or cognitive systems, contributing to various movement, cognition, memory, and psychosocial functioning problems.^{2–4} NDs stem from various causes, most of which are genetic predisposition, misfolded protein accumulation, mitochondrial dysfunction, oxidative stress, neuroinflammation, ion channels' function changes, and excitotoxicity. Oxidative stress represents an imbalance between oxidants and antioxidants in a biological system, because of either the enhancement of reactive oxygen species (ROS) or a deficient function of the antioxidant system, which results in lipid peroxidation, DNA damage, and neuroinflammation. The cellular antioxidant system, composed of superoxide dismutase (SOD), catalase (CAT), peroxidase, and reduced glutathione (GSH), acts as a free radical scavenger, and neurodegeneration is promoted due to an imbalance in the


defensive actions of antioxidants and overproduction of ROS.^{5,6} Moreover, neuroinflammation, which is initially crucial for stimulating tissue repair and removing the brain's cellular waste, could be a significant key factor in the pathogenesis and progression of various NDs in cases of persistence due to genetic mutations, trauma, and infection, which play their roles via proinflammatory agent release, including interleukin-6 (IL-6) and immune cell activation, leading to neuronal dysfunction and destruction. In fact, the engagement and overactivity of microglia and astrocytes in neuroinflammatory responses might be responsible for the pathogenesis of neurodegenerative diseases, especially Alzheimer's disease, in which microglia play a vital role in responding to A β aggregation.^{7–10} The major NDs include Alzheimer's disease (AD), Parkinson's


Received: June 7, 2024

Revised: July 10, 2024

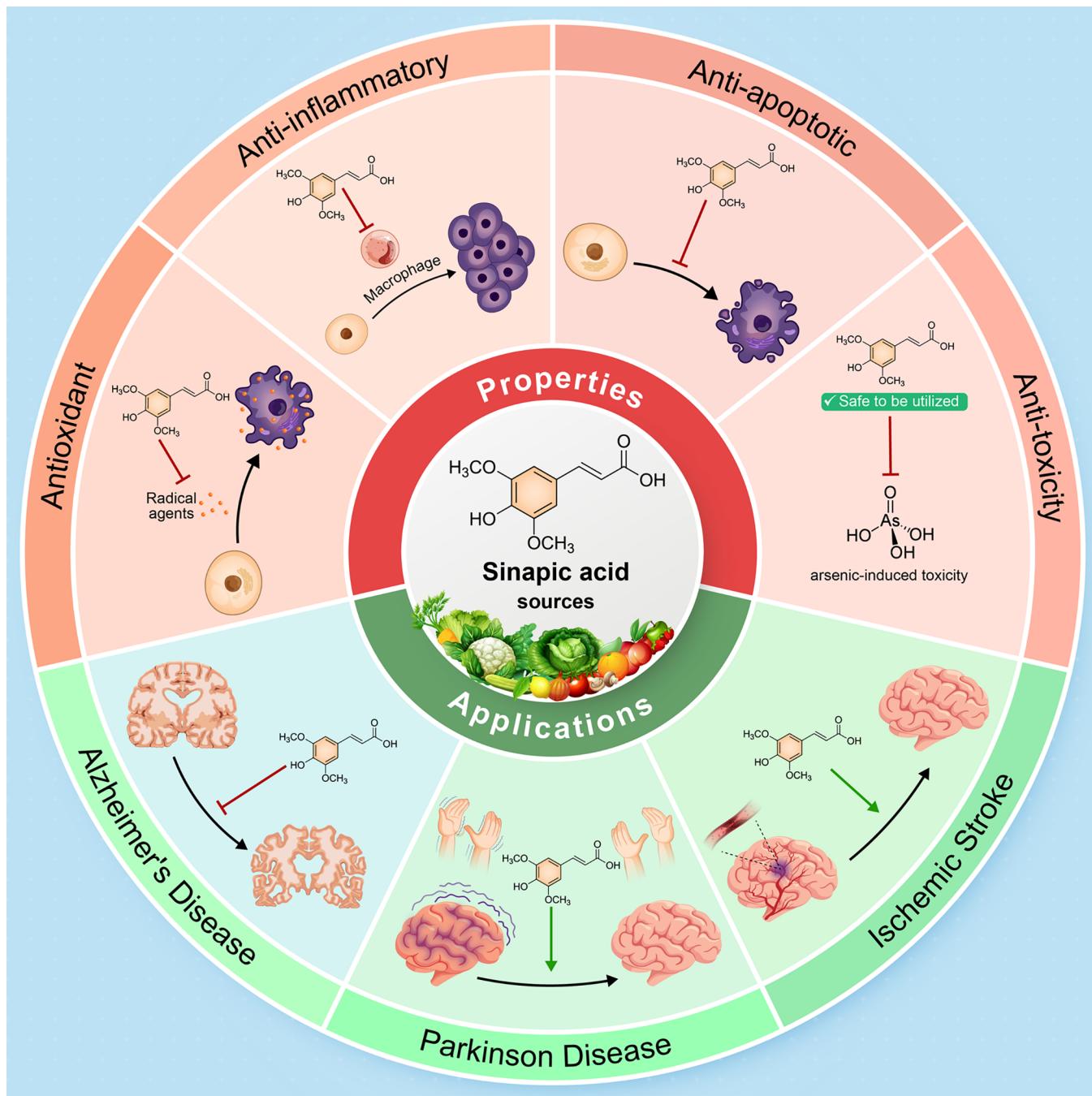
Accepted: July 15, 2024

Published: July 31, 2024

Figure 1. Chemical structure of sinapic acid: gray spheres, carbon atoms; red spheres, oxygen atoms; white spheres, hydrogen atoms.

disease (PD), ataxia, Huntington's disease (HD), motor neuron disease, multiple system atrophy, and progressive supranuclear palsy, in which the main causes are reported to be the accumulation of amyloid β ($A\beta$), Tau, and α -synuclein in the form of insoluble fibrillary deposits with β -sheet structure in the brain of patients.^{11,12} According to the Global Burden of Disease (GBD) study, a variety of conditions, including AD, PD, multiple sclerosis (MS), and epilepsy, as well as headache disorders such as migraine, tension-type headache, and medication-overuse headache, collectively contribute to 3% of the GBD. The top 50 causes of disability-adjusted life years (DALYs) include dementia, epilepsy, migraine, and stroke.¹³

Migraine and epilepsy have significantly contributed to the overall disease burden in the past decade, representing roughly one-third and one-quarter of this burden, respectively. Additionally, dementia and PD have emerged as notable contributors to the disease burden, ranking among the top 15 conditions with the most substantial increase in burden over the same period.^{13–15}


Specifically, when considering the impact on years lived with disability (YLDs), NDs accounted for approximately 5.5% of the total YLDs, equivalent to a staggering 42.9 million YLDs. Notably, conditions such as migraine, epilepsy, and dementia were among the top 25 causes of YLDs in 2010. The number of individuals affected by migraines alone represents over 50% of those experiencing neurological YLDs, or approximately 2.9% of the global YLDs. In contrast, epilepsy accounts for approximately 1.1% of the global YLDs.¹³ Despite extensive research, effective and targeted treatments for these disorders remain elusive.

In recent years, there has been a growing interest in neuropharmacology to discover new therapeutic agents that can improve the underlying mechanisms of NDs.¹⁶ One promising field is the utilization of natural products containing secondary metabolites found in plants, which play a crucial role

Table 1. Amounts of Sinapic Acid Content in Natural Sources³²

source	product	sinapic acid ($\mu\text{g/g}$)
Fruits	Lemon (<i>Citrus limon</i> (L.) Burm. f.)	72.1
	Orange (<i>Citrus sinensis</i>)	9.67; 17.28
	Strawberries (<i>Fragaria ananassa</i> L.)	450.30
	Raspberries (<i>Rubus idaeus</i> L.)	36.89
	Mango (<i>Mangifera indica</i> L.)	7.55
	Apples (<i>Malus domestica</i> L.)	13.42
Vegetables	Garlic (<i>Allium sativum</i> L.)	0.5
	White cabbage (<i>Brassica oleracea</i> var. <i>capitata</i>)	1.80
Cereal grains	Red onion (<i>Allium cepa</i> L.)	2.0
	Rice	1.05
Herbs and Spices	Basil (<i>Ocimum basilicum</i> L.)	150
	Rosemary (<i>Rosmarinus officinalis</i> L.)	690
	Chillies (<i>Capsicum</i>)	100

in drug discovery since the synthetic drugs could damage neurons due to their toxicity and might contribute to brain disorders because they modulate the activity of multiple brain circuits controlling decision-making power, memory, learning, and other functions.^{17,18} To date, several plant-derived compounds, including polyphenols and mostly flavonoids like myricetin, naringenin, curcumin, luteolin, fisetin, cornin, hesperidin, apigenin, and quercetin, have proved to be promising neuroprotective agents due to their antioxidant, free radical clearance, anti-inflammatory, and antimutative properties.^{5,6,19–22} Studies have shown that flavonoids play a key role as antioxidants by activating SOD, CAT, and GPx, lowering GSH, and stopping lipid peroxidation. They also have anti-inflammatory properties that come from their ability to control tyrosine and serine–threonine kinases, cyclooxygenase (COX) and lipoxygenase suppression, and the production of

Figure 2. Neuroprotective properties of sinapic acid in neurological disorders through its anti-inflammatory, antioxidant, antiapoptotic, and antitoxicity activities, which enable it to remove free radicals and cellular toxins while blocking inflammatory and apoptosis pathways.

proinflammatory molecules such as nitric oxide, prostaglandins, and leukotrienes. They do this while also controlling cytokine and chemokine levels and stopping leukocyte adhesion at the site of inflammation.⁵

Sinapic acid (SA), 3,5-dimethoxy-4-hydroxycinnamic acid, belongs to the phenylpropanoid family and is commonly found in the human diet²³ (Figure 1). It is present in various plant sources such as cereals, nuts like hazelnuts, seed oils, mustard, and rapeseeds, as well as in fruits like oranges, grapefruits, and berries, exhibiting antioxidant properties (Table 1).^{24,25} Additionally, SA is found in wine and vinegar and is notably abundant in cereal bran along with ferulic acid.^{26,27} SA is capable of either scavenging excessive free radicals or

mitigating the effects of oxidants.²⁸ In addition to its antioxidant properties, SA demonstrates metal-chelating potential, anti-inflammatory effects, antiapoptotic properties, and neuroprotective qualities, with the last attributed to the inhibition of inducible nitric oxide synthase (iNOS) expression and nitric oxide blockade. Moreover, SA demonstrates promise in safeguarding against lysosomal dysfunction and mitigating carbon tetrachloride-induced inflammation in rats, potentially via nuclear factor κ light chain enhancement of activated B cells (NF- κ B) activation and the modulation of proinflammatory cytokines.^{24,29,30}

Neuroinflammation, oxidative stress, and programmed cell death are central features of many neurological disorders. SA's

ability to modulate these pathways suggests a potential therapeutic role in mitigating the underlying causes of neuronal damage. Understanding the mechanistic insights of SA at the molecular and cellular levels is pivotal in unraveling its pharmacological potential.³¹ Therefore, the focus of this current review is to investigate the protective effects of SA in the context of neurodegenerative diseases. Our investigation encompasses an examination of its chemical properties, pharmacokinetics, toxicity, mechanism of action, and demonstrated efficacy in various neurological disorders.

2. SEARCH STRATEGY

In this literature review, we conducted searches using specific keywords, including sinapinic acid, sinapic acid, neurodegeneration, neurotoxicity, neuroinflammation, Alzheimer's disease, Parkinson's disease, epilepsy, seizure, multiple sclerosis, neuroprotection, oxidative stress, and brain ischemia. We conducted these searches across various databases, including PubMed, Google Scholar, Web of Science, ResearchGate, and Science Direct, specifically targeting English-language papers. As a result, we thoroughly reviewed the articles extracted from these searches.

3. NATURAL SOURCES

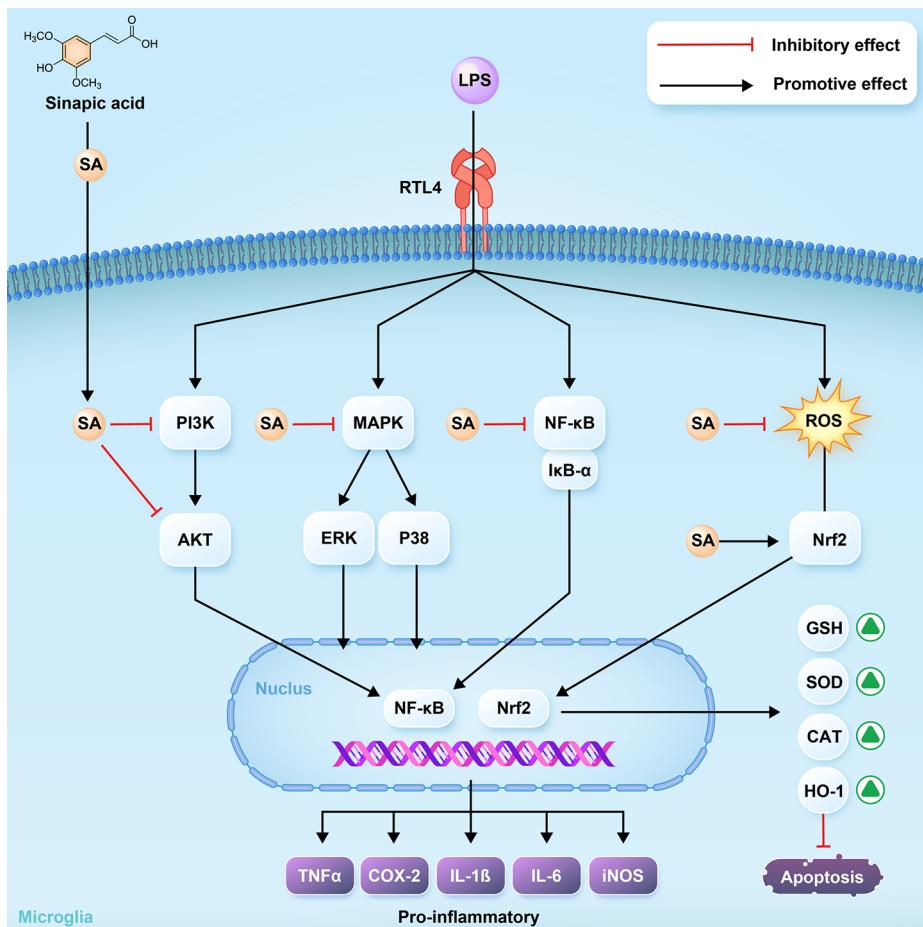
Hydroxycinnamic acids (HCAs) are an important group of phenolic compounds. SA, cinnamic acid, caffeic acid, *p*-coumaric acid, and ferulic acid are some of the most well-known HCAs.²⁵ Particularly, SA is highly prevalent and found in various vegetables, fruits, oilseed crops, certain spices, medicinal plants, and cereal grains. Among fruits, strawberries (*Fragaria ananassa* L.) contain the highest amount of SA, at 450.3 μ g/g. For vegetables, broccoli (*Brassica oleracea* L. var. *italica*) contains 25–82 μ g/g of SA. Oats (*Avena sativa* L.) top the list among cereal grains, with 56.05 μ g/g, and borage (*Borago officinalis* L.) is the leading herb and spice, containing 1210 μ g/g of SA.³³

4. CHEMICAL PROPERTIES

HCAs exist in free form and as ester compounds, such as sugar esters (glycosides). Within the cell walls of cereals, ferulic acid and SA can combine to form dimers. SA is a crystalline powder with a molecular weight of 224.21 g/mol and a melting point in the range of 203–205 °C that exhibits incompatibility with strong oxidizing agents and strong base chemicals, plus low solubility in water.³⁴ Antioxidant, anticancer, and neuroprotective activities have been observed in SA as a natural HCA.²⁶ SA has also shown metal chelating potential, anti-inflammatory, antibacterial, antihyperglycemic, antimicrobial, anxiolytic, and tumor-fighting activities, peroxynitrite and free-radical scavenging, plus antihypertensive and cardiovascular remodeling^{11,35} (Figure 2). It is shown that SA's poor solubility, hydrophobic nature, low in vitro dissolution rate, reduced oral bioavailability, and enhanced lipophilicity due to the esterification are responsible for its limited therapeutic potential whereas the increased lipophilicity results in higher affinity for the lipophilic phase of certain drug delivery systems and the cell membrane.^{36–38} In this regard, several studies have been performed to investigate the possible strategies for a more effective delivery of SA for therapeutic purposes. SA encapsulation in various nano delivery systems including solid lipid nanoparticles, glucosamine nanoparticles, ethosomes, transferosomes, and liposomes has been shown to be a

promising technique to overcome SA's lack of solubility and bioavailability contributing to their interesting properties like high biocompatibility, protected drug release, and cross-skin permeability which lead to efficient penetration of the embedded molecule into the target site and a better therapeutic result.^{36,37,39,40}

5. PHARMACOKINETICS


Upon ingestion, SA undergoes metabolic processes within the epithelial cells of the small intestine, yielding metabolites like methyl sinapate sulfate and 3-hydroxy-5-methoxyphenylpropionic acid. Consequently, the small intestine serves as the primary absorption site for orally administered SA, facilitated by active Na⁺ gradient-driven transport.⁴¹ Serum albumin assists in distributing SA throughout the body by binding to it through hydrophobic interactions and hydrogen bonding, aiding its transport to various tissues. Distribution is influenced by SA's lipophilicity and the presence of transport proteins in the bloodstream, determining its ability to traverse cell membranes and reach target tissues. The accumulation of SA in specific tissues depends on their affinity for phenolic acids and the presence of metabolizing enzymes.⁴²

SA and its metabolites are mainly eliminated from the body through urine and bile. After absorption and metabolism in the small intestine, including phase I and II reactions producing metabolites like 3-hydroxy-5-methoxyphenylpropionic acid and methyl sinapate sulfate, they enter the bloodstream. From there, these compounds are likely filtered by the kidneys and excreted in urine. Biliary excretion into the intestine is another route for their elimination. The exact pathways and rates of excretion may vary due to individual metabolism and dosage levels, but renal and biliary excretion are the primary routes for eliminating SA from the body.⁴³ Specific data on the half-life of SA in humans are limited. Various studies have shown that SA and its metabolites have different elimination rates, indicating varying half-lives. These studies underscore the variability in SA's half-life across different species and highlight the need for further research to understand its persistence and effects in humans.⁴⁴

6. TOXICITY

Although SA possesses several beneficial pharmacological characteristics, it is important to note that its cytotoxic reaction can vary among different cell types depending on the dosage. However, studies have shown that, except for extremely high concentrations, SA does not induce cytotoxicity in the investigated cell lines. This is evidenced by the absence of any symptoms of toxicity or mortality at doses up to 2000 mg/kg when administered orally, since 40 mg/kg of SA has been shown to be capable of ameliorating ethanol-induced gastric ulcers in rats through modulating vital signaling pathways, leading to cell viability increase.^{45,46} Moreover, following 24 h exposure of SH-SY5Y cells to SA at various concentrations, no toxic effects were observed (maximum safe concentration: 800 μ M), leading to the conclusion that it is safe to be utilized in different settings.⁴⁷ In an in vitro PD study on these cell lines also, 30 μ g/mL of SA was announced as the highest dose for optimal cell viability.⁴⁸

The ability of SA to chelate metals plays a crucial role in protection against arsenic-induced toxicity in vivo studies, in one of which 40 mg/kg bw/day oral administration of SA in rats revealed vital protective properties without any

Figure 3. Schematic illustration of the mechanisms by which sinapic acid performs its neuroprotective actions. It demonstrates that sinapic acid is capable of modulating essential signaling pathways involved in the pathophysiology of neurological diseases, including the inhibition of MAPK, PI3K, and NF-κB pathways, as well as ROS generation and apoptotic cascades' blockade. Abbreviations: AKT, protein kinase B; CAT, catalase; ERK, extracellular signal-regulated kinase; COX-2, cyclooxygenase-2; GSH, glutathione; HO-1, heme oxygenase; IκB-α, nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor α; IL, interleukin; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinases; NF-κB, nuclear factor κ-light-chain-enhancer of activated B cells; Nrf2, nuclear factor erythroid-2 related factor 2; p38, mitogen-activated protein kinases; PI3K, phosphoinositide 3-kinase; ROS, reactive oxygen species; SA, sinapic acid; SOD, superoxide dismutase; TLR4, Toll-like receptor 4; TNF-α, tumor necrosis factor-α.

further toxicity induction.⁴⁹ SA (0.1% and 0.2%) has demonstrated a remarkably low toxicity profile in broiler chickens, as reported in the absence of any alterations in serum lactate dehydrogenase (LDH) and creatine kinase (CK) activity, considering SA safe for being used in various physiological aspects of animals.^{41,50}

7. PROPERTIES

7.1. Antioxidant. As previously mentioned, the antioxidant profile of SA and its derivatives, maintained through free radical scavenging, plays a crucial role in neuroprotection against lysosomal dysfunction.¹³ SA's ability to donate hydrogen atoms and use the conjugated system to stabilize the resultant phenoxyl radicals is critical to its antioxidant action.³⁴ SA is known to scavenge various radicals such as 2,2-diphenyl-1-picrylhydrazyl (DPPH[•]), superoxide anion radical (O₂^{•-}), highly reactive hydroxyl radicals (•OH), hydroperoxyl radical (•OOH), nitric oxide radical (•NO), and peroxynitrite (ONOO⁻). It effectively scavenges both naturally occurring ONOO⁻ and ONOO⁻ generated from the peroxynitrite donor 3-morpholinosydnonimine hydrochloride (SIN-1).⁴¹ At a dosage of 20 μM, SA was reported to inhibit 33.2% of the

DPPH radical. Furthermore, studies noted that SA demonstrated stronger antiradical activity than its alkyl esters.^{34,51} SA's ability to inhibit lipid oxidation is another property, although it exhibits concentration-dependent inhibition in hydroperoxide formations. It efficiently blocks lipid peroxidation caused by peroxy radicals generated during Cu²⁺-induced oxidation of human low-density lipoproteins (LDL).^{41,52} SA demonstrates the most potent inhibition, followed by caffeic acid and ferulic acid.⁴¹ High concentrations of tocopherol (vitamin E) have been shown to reduce SA's antioxidant effects on lipids.⁵³

7.2. Anti-Inflammatory. The anti-inflammatory and anticarcinogenic properties of SA and its derivatives are well-established.³³ The cancer-killing potential of SA was evaluated, and a minimal impact on breast carcinoma was found, whereas its inhibitory effects on colon cancer cells, capable of tumorigenesis, were obvious.⁵⁴ Conversely, SA demonstrated an antiproliferative effect on the human breast T47D cancer cell line. However, the effects of SA vary depending on the duration of exposure and the dosage administered.^{33,55} Available data demonstrate a significant reduction in experimental colitis symptoms in a mouse model induced by

2,4,6-trinitrobenzenesulfonic acid (TNBS), exerting strong anti-inflammatory actions. Here, SA's protective effects were primarily attributed to its inhibitory properties on inflammatory cytokine generation, such as myeloperoxidase (MPO) and tumor necrosis factor- α (TNF- α), which contribute to tissue damage and severe inflammation.⁵⁶ Similarly, in RAW264.7 macrophages, the anti-inflammatory effects of SA were found to be due to the suppression of COX-2, TNF- α , and IL-1 β expression.²⁴ Multiple studies have linked SA's anti-inflammatory effect to NF- κ B modulation and the expression of proinflammatory cytokines, which play a crucial role in safeguarding the mouse liver against inflammation induced by carbon tetrachloride.^{13,57,58}

7.3. Antiapoptotic. The antiapoptotic property of SA has also been proven by several investigations. In rat liver lesions induced by methotrexate (MTX), SA exhibited the ability to restore antioxidant defenses, reduce oxidative stress and levels of inflammatory cytokines (TNF- α and IL-1), and prevent apoptosis. These effects appear to be the result of NF- κ B blockade, leading to the activation of the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase (HO-1) pathway, which prevents apoptosis and stimulates antioxidant enzymes. Treatment with SA significantly ameliorated the severity of MTX-induced liver damage.⁵⁹ Furthermore, immediate administration of SA has been shown to have protective effects against KA-mediated hippocampal neuronal cell death, attributed to the anticonvulsant activity mediated by γ -aminobutyric acid (GABA) receptor activation and SA's free radical inhibitory activity.⁶⁰

8. SINAPIC ACID'S MECHANISMS OF ACTION

Neuroinflammation happens when cells in the central nervous system, mainly microglia, recognize pathogen endotoxins through Toll-like receptors (TLRs) and start the inflammatory process. They then release cytokines and proinflammatory agents, such as nitric oxide, prostaglandin E2, and ROS.^{61,62} Moreover, these cells activate downstream proteins, including protein kinase B (AKT) and mitogen-activated protein kinases (MAPKs), by triggering antigen-induced signal transduction pathways. Stimulation by lipopolysaccharide (LPS) leads to the activation of MAPK cascades, with AKT serving as an essential effector kinase downstream of phosphoinositide 3-kinases (PI3K).⁶³ In terms of SA's anti-inflammatory properties, studies done in vitro and in vivo showed that it could work as an active substance by blocking the MAPK and AKT signaling pathways to stop LPS-induced inflammation and could be a possible therapeutic choice for treating NDs that are connected to inflammation.⁶¹ The mechanism of SA's neuroprotective activity has also been investigated in connection with GABA, which is the primary inhibitory neurotransmitter for the adult central nervous system, generated by the GABAergic neurons in the hippocampus, thalamus, basal ganglia, hypothalamus, and brainstem, and it reduces neuronal excitability through nerve transmission blockade. For a proper neurologic function, there must be a balance between inhibitory neuronal transmission via GABA and excitatory transmission via glutamate. GABA receptors, GABA_A and GABA_B (GABARs), respond when GABA is released into the postsynaptic nerve terminal, and mutations of their genes are seen in most NDs.^{64–66} Normally, dopaminergic neurons of the nigro-striatal pathway which are responsible for the cerebral cortex's motor activity, facilitate the GABAergic pathway. Loss of dopaminergic neurons in this

pathway, which happens in PD, reduces the inhibitory effects of GABAergic neurons and results in motor activity deficiencies.⁵ In this regard, it is suggested that SA might act as a potential agonist for GABA receptors since 1 μ M of SA enhanced GABA currents, and reactive I_{GABA} rose to 1.8 times.⁶⁰ Additionally, the potential of trans-SA as a neuromodulator and its impact on the release of monoamine oxidase (MAO-A and MAO-B), TNF- α , and acetylcholinesterase (AChE) enzymes were observed (Figure 3).²⁸

8.1. Alzheimer's Disease and Memory Impairment.

AD is acknowledged as the most common type of NDS, affecting more than 50 million people worldwide, and is characterized by the brain accumulation of extracellular $A\beta$ aggregates (plaques) and intraneuronal Tau deposits (neurofibrillary tangles).⁶⁷ As an incurable and advancing condition, AD is distinguished by two principal molecular processes: the cholinergic hypothesis, which is associated with the degeneration of cholinergic neurons in the frontal region of the brain, and the amyloid β protein hypothesis, which is linked to the deposition of this protein and the resultant oxidative stress.^{68,69} AD is also strongly associated with dementia and is caused by various mechanisms, including mitochondrial dysfunction, apoptosis, endoplasmic reticulum stress, genetic factors, oxidative stress, neuroinflammation, microRNA signaling dysregulation, and cholinergic dysfunction, which collectively contribute to the progression of the disease, leading to NDs and cell death as they mutually influence one another.^{60,70–73} Current treatments, including medications such as tacrine, rivastigmine, galantamine, donepezil, and memantine, aim to alleviate symptoms but do not effectively delay the progression of the disease.^{74–77} Given the substantial social and economic impact of this disease, it is imperative to redirect treatment efforts toward addressing the diverse mechanisms of neuronal degeneration implicated in its development.

Plant-derived compounds, specifically flavonoids like limonene, curcumin, naringin, resveratrol, crocin, and naringenin, have gained significant attention for AD treatment during the past decades due to their promising neuroprotective effects via binding to toxicity, ansferrin, downregulating TNF- α , nitric oxide, and oxidative stress, reducing $A\beta$ protein generation and ROS clearance, hindering proinflammatory cytokines' production, plus mitochondrial toxicity and cholinergic dysfunction reduction.^{78–85} In this context, multiple studies have investigated the therapeutic potency of SA in AD models. SA administration in AD in vivo models, induced by $A\beta$ (1–42), AlCl₃, and streptozotocin, demonstrated neuronal cell death reduction, glial cell activation, iNOS expression enhancement, and increased antioxidant enzyme levels leading to memory loss prevention and MAO-A and MAO-B blockade, in addition to an appropriate response to chemical and pathological changes in induced memory and learning impairment.^{86–88} In scopolamine-induced AD models, Lee et al. demonstrated SA's potency to ameliorate both long- and short-term spatial memory deficits as well as avoid memory loss through upregulation of hippocampus synaptic activity and the stimulation of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) expression. SA also hindered inflammation by lowering the levels of prostaglandin-endoperoxide synthase 2 (COX-2) and IL-1 β ; plus it was capable of reversing cognitive decline brought on by cholinergic receptor blockage and long-term potentiation (LTP) impairment.⁸⁹ Another study aimed to investigate the influence of SA on the equilibrium of TNF- α , malondialdehyde

Table 2. Preclinical Studies Investigating the Neuroprotective Effects of Sinapic Acid in Different Neurological Conditions^a

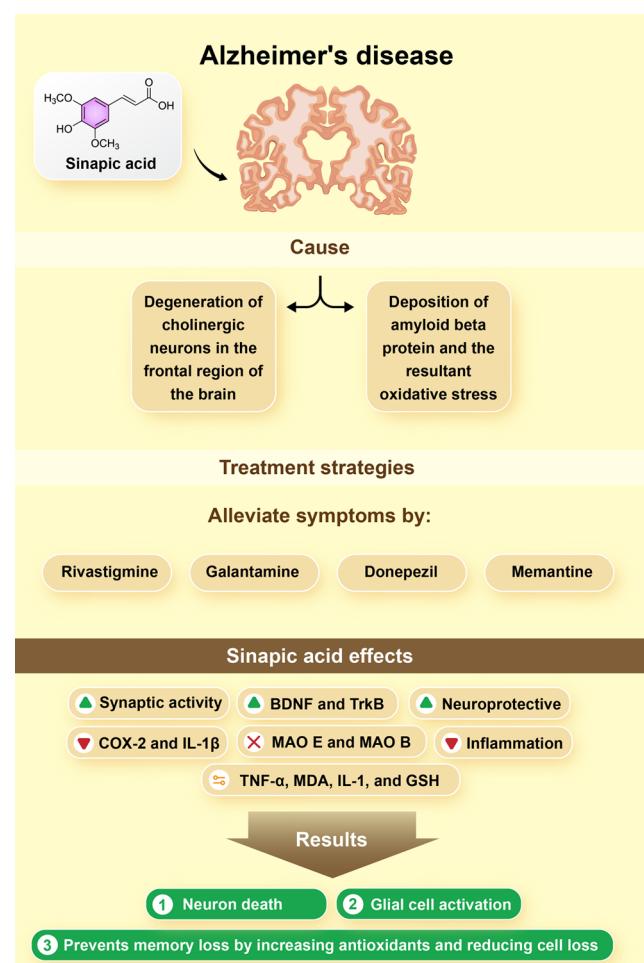

neurological disorder	animal model	induction model	sinapic acid dose	route of sinapic acid administration	effective dose	findings	ref
Alzheimer's disease	Male Wistar rats	Intracerebroventricular streptozotocin injection	10, 20 mg/kg; once daily for 3 weeks	Intragastrical	20 mg/kg	• Improved performance in the MWM test after STZ-induced challenges • Restored normal behavior in the fourth quadrant of the MWM test on day 21 • Enhanced retention in the passive avoidance test following STZ treatment • Reversed STZ-induced decreases in GSH levels at 20 mg/kg in both cortex and hippocampus • Prevented increased MDA levels in the cortex and hippocampus caused by STZ • Reduced TNF- α and IL-1 β levels in both cortex and hippocampus • Reestablished normal ChAT expression in the hippocampus after STZ treatment • Diminished neural loss in the CA1 region of the hippocampus due to STZ • Reversed A β -42 protein-induced step-through latency reduction in passive avoidance task • Increased Nissl-positive cells in CA1 • Reduced 'TUNEL'-positive cells in hippocampal CA1 • Lowered caspase-3-positive cell count in hippocampal CA1 • Decreased OX-42-positive cell presence • Attenuated astrocyte activation by reducing GFAP-positive cells • Diminished anti-NT immunoreactivity post A β 1-42 treatment • Lowered NT expression in hippocampal CA1	90
	Male ICR mice	Hippocampus bilateral injection of A β 1-42 protein	1, 3, 10 mg/5 mL/kg, once daily for 7 days	Oral	10 mg/kg	• Reversed A β 1-42 protein-induced step-through latency reduction in passive avoidance task • Increased Nissl-positive cells in CA1 • Reduced 'TUNEL'-positive cells in hippocampal CA1 • Lowered caspase-3-positive cell count in hippocampal CA1 • Decreased OX-42-positive cell presence • Attenuated astrocyte activation by reducing GFAP-positive cells • Diminished anti-NT immunoreactivity post A β 1-42 treatment • Lowered NT expression in hippocampal CA1	86
	Wistar rats	Administration of 175 mg/kg AlCl3 for 25 days	30, 60 mg/kg	Oral		• Improved memory deficits caused by AlCl3	114
	Sprague-Dawley rats	Hippocampus injection of scopolamine	10 mg/kg for 14 days	Oral		• Positive effects on biochemical and pathological changes • Improved avoidance memory and spatial recognition learning, both short and long-term • Reduced inhibition of BDNF and TrkB, and damped activation of COX-2 and IL-1 β induced by scopolamine in the hippocampus • MAOA/B blockade	89
	Male & female Wistar albino rats	Oral administration of 175 mg/kg AlCl3 for 25 days	20, 40 mg/kg	Oral	40 mg/kg		88
	Male Wistar rats	Intracerebroventricular streptozotocin injection	2.5, 5, 10, and 20 mg/kg bw, daily for 28 days	Intragastric	10 and 20 mg/kg	• Increased levels of CAT, SOD, GSH • Reduced levels of TNF- α in a dose-dependent manner • Enhanced memory by extending retention • Reduced dark compartment time in avoidance test • Suppressed hippocampus TNF- α levels • Boosted antioxidant enzyme activity (CAT, SOD, GPX) • Lowered brain MDA levels, and minimized neural damage in cortex and hippocampus	87
Parkinson's disease	Male Wistar rats	Unilateral intrastriatal 6-hydroxydopamine injection	10 and 20 mg/kg	Oral		• Reduced rotations in response to apomorphine • Enhanced Nissl-stained neuron count in the SNC • Elevated TH-positive neuron count on the left side of SNC	101

Table 2. continued

neurological disorder	animal model	induction model	sinapic acid dose	route of sinapic acid administration	effective dose	findings	ref
						• Lowered iron reactivity in the left midbrain (iron-staining assay)	
						• Decreased MDA and nitrite levels, with no notable improvement in SOD activity	102
						• Improved behavior and prevented dopaminergic neuron loss in PD models	
						• Enhanced mitochondrial function, countering the effects of MPTP treatment	
						• MPTP treatment increased Drp1 and phospho-Drp1 Ser616 levels	
						• Reversed phospho-Drp1 Ser616 and REV-ERB α protein expression in MPTP-treated mice	103
						• Enhanced movement and reduced stiffness in the open field test	
						• Alleviated rotenone-induced uneven forelimb usage	
						• Lowered serum iron levels and restrained transferrin increase	
						• Elevated serum HO-1 and brain GPx-4 levels	
						• Safeguarded against rotenone-induced CAT and SOD reduction in the brain	
						• Prevented rotenone-induced decline in brain CAT and SOD levels	
						• Curbed lipid peroxidation by reducing brain MDA levels	
						• Augmented TH activity in dopaminergic SNC neurons	
						• Reduced seizure-like behavior and cell death in the CA1 and CA3 regions of the hippocampus	113
						• Reduced nitrotyrosine formation and boosted iNOS expression caused by KA	
						• Diminished activation of microglia and astrocytes in the hippocampus due to KA	
						• Improved memory in the passive avoidance task and reversed reduced step-through latency caused by KA	
						• Rescued ischemic neurons. Decreased prolongation of latency in MWM	110
						• Reduced iNOS expression in BV-2 cells	61
						• Lowered IL-6 levels in BV-2 microglia and serum	
Ischemia and cognitive impairments	Male Wistar rats	1.5% isoflourane in N ₂ O/O ₂ (70:30) mixture injection, both common carotid arteries occlusion	1, 3, and 10 mg/kg	Intraperitoneal	10 mg/kg		
Neuroinflammation	Male ICR mice, BV-2	2.5 mg/kg/day intraperitoneal LPS injection, 30 min after SA oral gavage, 3 days before sampling the	10 and 20 mg/kg/day for 8 days	Oral	20 μ M		

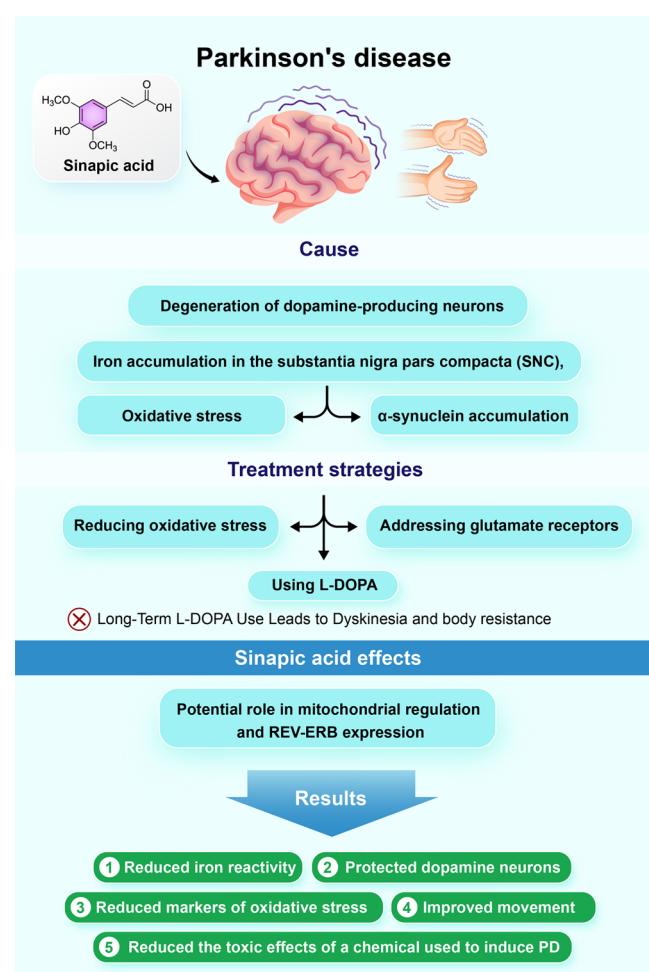
^aAbbreviations: A β , amyloid β ; AchE, acetylcholinesterase; AKT, protein kinase B; CAT, catalase; ChAT, choline acetyltransferase; Drp1, dynamin-related protein 1; ERK, extracellular signal-regulated kinase; GFAP, glial fibrillary acidic protein; GPX, glutathione peroxidase; GSH, glutathione; HO-1, heme oxygenase-1; IL-1 β , interleukin 1 β ; iNOS, inducible nitric oxide synthase; JNK, Jun N-terminal kinase; KA, kainic acid; LPS, lipopolysaccharide; MAO, monoamine oxidase; MAPK, mitogen-activated protein kinase; MDA, malondialdehyde; MPTP, neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MWM, Morris water maze; NT, nitrotyrosine; OX-42, anti-CD11b; p38, p38 mitogen-activated protein kinases; PD, Parkinson's disease; REV-ERB α , nuclear receptor subfamily 1 mouse cerebral cortex, suggesting protective effects

group D; SA, sinapic acid; SNC, substantia nigra pars compacta; SOD, superoxide dismutase; STZ, streptozotocin; TBARS, thiobarbituric acid reactive substance; TH, tyrosine hydroxylase; TNF- α , tumor necrosis factor- α .

Figure 4. Pathophysiological mechanisms involved in Alzheimer's disease, primarily amyloid- β aggregation and cholinergic neurons degeneration. Sinapic acid's potential as a promising therapeutic molecule for Alzheimer's disease is shown, as it can modulate various inflammatory, apoptotic, and oxidative stress-inducing agents, contributing to memory loss prevention and neural cell damage reduction. Abbreviations: BDNF, brain-derived neurotrophic factor; COX-2, cyclooxygenase-2; GSH, glutathione; IL, interleukin; MAO, monoamine oxidase; MDA, malondialdehyde; TNF- α , tumor necrosis factor- α ; TrkB, tropomyosin receptor kinase B.

(MDA), IL-1, and GSH levels, which exhibited alterations and a noticeable decrease in choline acetyltransferase (ChAT) expression. SA's neuroprotective effect on oxidative stress, neuroinflammation, cholinergic dysfunction, and neuron loss led to an improvement in AD patients.⁹⁰ According to the results of experiments in this field, SA could be a promising therapeutic agent for AD due to its effects on both molecular pathways assumed for AD, delaying effects and preventing the progression of the disease, in addition to alleviating the symptoms currently available in the therapeutic pathways (Table 2, Figure 4).⁴¹

8.2. Parkinson's Disease. PD is the second most common neurodegenerative disease, characterized by dopaminergic neuronal degeneration in the mesencephalic substantia nigra pars compacta (SNC) and the accumulation of α -synuclein-rich clumps called Lewy bodies and Lewy neurites. In fact, PD is a movement disorder characterized by gradual motor function reduction, which results in tremors, bradykinesia, muscle stiffness, balance, and walking difficulty, in addition to


Table 2. continued

cognitive impairment, anxiety, and sleep disruption.^{91,92} The most effective drug for managing the motor symptoms of PD is L-DOPA, whose chronic use is associated with side effects, including motor response fluctuations and dyskinesia, and its effectiveness diminishes as the disease progresses.^{93–96} To address this, strategies involving neuroprotective agents are recommended to slow down the progression of PD.²⁴ Possible therapeutic strategies for managing PD involve diminishing oxidative stress through the elimination of free radicals and addressing glutamate receptors, which are generated because of heightened levels of reactive oxygen species.^{24,60}

Furthermore, iron accumulation plays a significant role in PD pathophysiology, and increased iron levels in the SNC contribute to oxidative stress and the accumulation of α -synuclein, leading to oxidative damage to dopaminergic neurons.²⁴

Natural products and phytochemicals for PD therapy have garnered significant attention due to their potential to reduce the side effects of chemical medications. Naringenin, curcumin, saffron, and crocin are herbal compounds that have shown neuroprotective profiles in PD models via their antioxidant, antidepressant, and anti-inflammatory properties, hindering α -synuclein fibrillation.^{97–100} The potential neuroprotective activities of SA have also been observed in PD models. Administration of SA in rat models induced by 6-hydroxydopamine (OHDA-6) led to improved turning behavior, prevented SNC dopaminergic neuron destruction, reduced iron reactions, and increased levels of MDA and nitrites when compared to the effects of apomorphine after surgery.¹⁰¹ Moreover, through the control of nuclear receptor subfamily 1 group D (REV-ERB) protein production, SA was pharmacologically triggered in a PD model induced by neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), revealing a unique function of REV-ERB in maintaining the equilibrium between two forms of dynamin-related protein 1 (Drp1) phosphorylation. Although it remains uncertain whether SA directly affects mitochondria and the expression of the REV-ERB protein, it may play a role in restoring abnormal mitochondrial conditions and regulating REV-ERB expression.¹⁰² In a rotenone-induced PD model, SA also exhibited neuroprotective properties, with a focus on the connection between iron and ferroptosis. Treatment with SA significantly reduced the loss of tyrosine hydroxylase (TH)-positive neurons in the striatum, improved motor symptoms, and lowered indicators of lipid peroxidation, oxidative stress, as well as serum iron and transferrin levels.¹⁰³ As a result, the usage of SA in the treatment of PD, due to its neuroprotective potential and other mentioned properties, could become more effective and overstep just relieving the symptoms of the disease (Table 2, Figure 5).¹⁰⁴

8.3. Ischemic Stroke. Ischemic stroke involves a period of reduced blood flow to the brain before restoring blood flow through medical intervention. This often leads to ischemia/reperfusion injury, which is now widely recognized for its detrimental effects on cognitive function.^{105,106} These effects manifest as various neurological and behavioral abnormalities, including vertigo, disorientation, and cognitive decline.^{107–109} Regarding the neuroprotective properties of phytochemicals for alleviating cerebral ischemia's complications, SA has revealed promising capabilities for preventing nerve damage and memory impairment due to its agonistic properties on the GABA receptor and inhibitory effect on free radicals.¹¹⁰

Figure 5. Pathophysiological changes involved in Parkinson's disease, including dopaminergic neurons' degeneration and α -synuclein accumulation in SNC, are shown. It is also proven that sinapic acid, as an alternative treatment for L-DOPA, can represent neuroprotective profiles in this disease via mitochondrial regulation, as well as the reduction of oxidative stress and iron reactivity, leading to improved movement and protection of dopaminergic neurons. Abbreviations: PD, Parkinson's disease; REV-ERB, nuclear receptor subfamily 1 group D.

Given SA's promising impact on mitigating nerve damage and memory impairment caused by ischemia, it appears to be an effective neuroprotective agent. This suggests that SA could play a significant role in therapeutic approaches targeting ischemia-related delayed neuronal death in the hippocampus as well as processes associated with hippocampal learning and memory (Table 2).¹¹¹

8.4. Hippocampal Neural Damage and Neuroinflammation. Two primary factors trigger the initiation of neuronal cell death: an excess of calcium and the production of free radicals due to the heightened activation of excitatory amino acid receptors.¹¹² When neurons experience cell death due to free radicals induced by kainic acid (KA), it can lead to severe outcomes such as epilepsy, neurodegeneration, memory loss, or nerve cell demise.⁶⁰ Administration of natural compounds, SA in this context, has shown promising therapeutic properties for KA-induced hippocampal neural damage and neuroinflammation via cell death and iNOS expression reduction, MAPK and AKT signaling pathway hindrance, in addition to decreasing the levels of IL-6 (Table 2).^{61,113}

9. DISCUSSION

NDs are severely disabling conditions that result from the gradual deterioration of the central nervous system's neurons, leading to changes in the neurons' structure and eventual death. After neural deterioration or severe damage, neurons are unable to regenerate on their own. Among different human NDs, AD has the highest rate of incidence, with approximately 5 million, followed by PD (1 million), MS (400 000), amyotrophic lateral sclerosis (ALS) (30 000), and HD (3000), according to the fact that the incidence of these diseases is expected to rise as the population ages.^{115,116} Due to their remarkable biological characteristics, numerous studies have so far assessed the therapeutic effectiveness of diverse plant-derived compounds in treating neurodegenerative diseases.¹¹⁷ SA is an interesting phenylpropanoid derivative, having multiple biological properties which have made it a potential therapeutic molecule via revealing antioxidant, anti-inflammatory, cancer-fighting, and antimicrobial activities, among which its antioxidant function has gained significant attention due to the oxidation-mediated mechanisms involved in neurodegenerative diseases' pathology.¹¹⁸ Different plants containing SA have demonstrated promising therapeutic effects on neurological issues. For instance, *Polygala tenuifolia*, which contains a great amount of SA, has shown potency to improve scopolamine-induced memory impairment. Additionally, SA and related compounds such as tenuifoloside B and 3,6'-disinapolysucrose can show pharmacological effects, as well as protecting the brain and improving cognitive function. In cereal bran, SA is also found alongside ferulic acid (more prevalent), playing a vital role in neuroprotection against diseases related to peroxy nitrite, exhibiting antineoplastic effects, and suppressing inflammatory markers in macrophages.¹¹¹

Anxiolytic effects have been highlighted as another amazing property of SA, which is performed through the GABAergic system, potentially acting on GABARs, in which the GABAR activation reduces neurotoxicity induced by certain substances. SA's ability to decrease A β levels, prevent neuronal cell death, inhibit antioxidant enzymes' activation, and modulate neurotransmitter systems underscores its anti-inflammatory and neuroprotective properties. Together, SA's antioxidant and anti-inflammatory activities are important properties that make it a promising candidate for mitigating pathogenic changes associated with NDs.⁶⁰

10. CONCLUSION

Several studies on SA's biological properties in NDs show that it is a useful natural molecule with important therapeutic properties, such as anti-inflammatory, antiapoptotic, and antioxidant properties. Before sinapic acid can be clinically applied, its pharmacokinetics and safety profile must be thoroughly examined *in vitro* and *in vivo*. Understanding its absorption, metabolism, and excretion is crucial for designing effective therapeutic interventions. These considerations pave the way for sinapic acid to move from experimental settings to clinical trials and therapeutic development. However, to validate and expand upon these findings, further research is necessary. Collaborative efforts among researchers, clinicians, and pharmaceutical developers are essential for advancing our understanding of sinapic acid's potential and translating it into effective treatments for individuals with NDs.

■ ASSOCIATED CONTENT

Data Availability Statement

The authors confirm that the data supporting the findings of this study are available within the article.

■ AUTHOR INFORMATION

Corresponding Authors

Hossein Amini-Khoei – *Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran*; Email: aminikhoyi@gmail.com

Yavuz Nuri Ertas – *Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; Department of Technical Sciences, Western Caspian University, AZ1001 Baku, Azerbaijan*; orcid.org/0000-0002-6791-7484; Email: yavuznuri@gmail.com

Authors

Mahan Farzan – *Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran; Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran*

Behnaz Abedi – *Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran*

Iman Bhia – *Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran*

Atossa Madanipour – *Student Research Committee, Alborz University of Medical Sciences, Karaj 3146883811, Iran*

Mahour Farzan – *Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran*

Mohammad Bhia – *School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran*; orcid.org/0000-0002-0706-2058

Ava Aghaei – *Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran*

Iman Kheirollahi – *Student Research Committee, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran*

Mahzad Motallebi – *Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran*

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acschemneuro.4c00349>

Notes

Declaration of Generative AI and AI-Assisted Technologies in the Writing Process. During the preparation of this work the authors used chat.openai in order to detect grammar errors. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank all those who participated in this study.

■ ABBREVIATIONS

A β : amyloid β

AchE: acetylcholinesterase

AD: Alzheimer's disease
AKT: protein kinase B
ALS: amyotrophic lateral sclerosis
BDNF: brain-derived neurotrophic factor
CAT: catalase
ChAT: choline acetyl transferase
CK: creatine kinase
COX-2: cyclooxygenase-2
DALYs: disability-adjusted life years
DPPH: 2,2-diphenyl-1-picrylhydrazyl
Drp1: dynamin-related protein 1
GABA: γ -aminobutyric acid
GABARs: GABA receptors
GBD: Global Burden of Disease
GFAP: glial fibrillary acidic protein
GPX: glutathione peroxidase
GSH: glutathione
HCA: hydroxycinnamic acid
HD: Huntington's disease
IL: interleukin
iNOS: inducible nitric oxide synthase
KA: kainic acid
LDH: lactate dehydrogenase
LDL: low-density lipoprotein
LPS: lipopolysaccharide
LTP: long-term potentiation
MAO: monoamine oxidase
MAPKs: mitogen-activated protein kinases
MDA: malondialdehyde
MPO: myeloperoxidase
MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MS: multiple sclerosis
MTX: methotrexate
NDs: neurodegenerative disorders
NF- κ B: nuclear factor κ -light-chain-enhancer of activated B cells
Nrf2/HO-1: nuclear factor erythroid-2 related factor 2/heme oxygenase-1
OHDA-6: 6-hydroxydopamine
PD: Parkinson's disease
PI3K: phosphoinositide 3-kinase
REV-ERB: nuclear receptor subfamily 1 group D
ROS: reactive oxygen species
RSN: reactive nitrogen species
SA: sinapic acid
SIN-1: 3-morpholinosydnonimine hydrochloride
SNC: substantia nigra pars compacta
SOD: superoxide dismutase
TBARS: thiobarbituric acid reactive substance
TH: tyrosine hydroxylase
TLRs: Toll-like receptors
TNBS: 2,4,6-trinitrobenzenesulfonic acid
TNF- α : tumor necrosis factor- α
TrkB: tropomyosin receptor kinase B
YLDs: years lived with disability
DALYs: disability-adjusted life years

■ REFERENCES

- (1) Borumandnia, N.; Majd, H. A.; Doosti, H.; Olazadeh, K. The trend analysis of neurological disorders as major causes of death and disability according to human development, 1990–2019. *Environ. Sci. Pollut. R* **2022**, *29* (10), 14348–14354.
- (2) Singh, S.; Chib, S.; Akhtar, M. J.; Kumar, B.; Chawla, P. A.; Bhatia, R. Paradigms and Success Stories of Natural Products in Drug Discovery Against Neurodegenerative Disorders (NDDs). *Current Neuropharmacology* **2024**, *22* (6), 992–1015.
- (3) Ruitenberg, M. F. L. Cognition and movement in neurodegenerative disorders: a dynamic duo. *Neural Regener. Res.* **2024**, *19* (10), 2101.
- (4) Rehman, M. U.; Sehar, N.; Dar, N. J.; Khan, A.; Arafah, A.; Rashid, S.; Rashid, S. M.; Ganaie, M. A. Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. *Neuroscience & Biobehavioral Reviews* **2023**, *144*, 104961.
- (5) Samanta, S.; Chakraborty, S.; Bagchi, D. Pathogenesis of Neurodegenerative Diseases and the Protective Role of Natural Bioactive Components. *Journal of the American Nutrition Association* **2024**, *43* (1), 20–32.
- (6) Castillo-Ordoñez, W. O.; Cajas-Salazar, N.; Velasco-Reyes, M. A. Genetic and epigenetic targets of natural dietary compounds as anti-Alzheimer's agents. *Neural Regeneration Research* **2024**, *19* (4), 846–854.
- (7) Cai, Y.; Zhang, Y.; Leng, S.; Ma, Y.; Jiang, Q.; Wen, Q.; Ju, S.; Hu, J. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. *Neurobiology of Disease* **2024**, *192*, 106426.
- (8) Shan, C.; Zhang, C.; Zhang, C. The Role of IL-6 in Neurodegenerative Disorders. *Neurochem. Res.* **2024**, *49* (4), 834–846.
- (9) Wani, I.; Koppula, S.; Balda, A.; Thekkukkara, D.; Jamadagni, A.; Walse, P.; Manjula, S. N.; Kopalli, S. R. An Update on the Potential of Tangeretin in the Management of Neuroinflammation-Mediated Neurodegenerative Disorders. *Life* **2024**, *14* (4), 504.
- (10) Mancuso, R.; Fattorelli, N.; Martinez-Muriana, A.; Davis, E.; Wolfs, L.; Van Den Daele, J.; Geric, I.; Premereur, J.; Polanco, P.; Bijnens, B.; et al. Xenografted human microglia display diverse transcriptomic states in response to Alzheimer's disease-related amyloid- β pathology. *Nature Neuroscience* **2024**, *27* (5), 886–900.
- (11) Chakrabarti, S.; Jana, M.; Roy, A.; Pahan, K. Upregulation of Suppressor of Cytokine Signaling 3 in Microglia by Cinnamic Acid. *Curr. Alzheimer Res.* **2018**, *15* (10), 894–904. From NLM.
- (12) Wu, Y.-C.; Bogale, T. A.; Koistinaho, J.; Pizzi, M.; Rolova, T.; Bellucci, A. The contribution of β -amyloid, Tau and α -synuclein to blood-brain barrier damage in neurodegenerative disorders. *Acta Neuropathologica* **2024**, *147* (1), 39.
- (13) Mental, Neurological, and Substance Use Disorders: Disease Control Priorities, 3rd ed.; Patel, V., Chisholm, D., Dua, T., Laxminarayan, R., Medina-Mora, M. E., Eds.; The International Bank for Reconstruction and Development/The World Bank, 2016; Vol. 4.
- (14) Wang, H.-F.; Liu, W.-C.; Zailani, H.; Yang, C.-C.; Chen, T.-B.; Chang, C.-M.; Tsai, I. J.; Yang, C.-P.; Su, K.-P. A 12-week randomized double-blind clinical trial of eicosapentaenoic acid intervention in episodic migraine. *Brain, Behavior, and Immunity* **2024**, *118*, 459–467.
- (15) AlRuwaili, R.; Al-kuraishi, H. M.; Al-Gareeb, A. I.; Ali, N. H.; Alexiou, A.; Papadakis, M.; Saad, H. M.; Batiha, G. E.-S. The Possible Role of Brain-derived Neurotrophic Factor in Epilepsy. *Neurochem. Res.* **2024**, *49* (3), 533–547.
- (16) Babazadeh, A.; Vahed, F. M.; Liu, Q.; Siddiqui, S. A.; Kharazmi, M. S.; Jafari, S. M. Natural Bioactive Molecules as Neuromedicines for the Treatment/Prevention of Neurodegenerative Diseases. *Acs Omega* **2023**, *8*, 3667.
- (17) Ang, J.-J.; Low, B.-S.; Wong, P.-F. Dopamine and central dopaminergic circuitry in neurodegenerative diseases: Roles and mechanisms of action of natural phytochemicals. *Pharmacological Research - Natural Products* **2024**, *3*, 100050.
- (18) Marino, A.; Battaglini, M.; Moles, N.; Ciofani, G. Natural Antioxidant Compounds as Potential Pharmaceutical Tools against Neurodegenerative Diseases. *Acs Omega* **2022**, *7*, 25974.

- (19) Li, L.; Wang, L.; Zhang, L. Therapeutic Potential of Natural Compounds from Herbs and Nutraceuticals in Alleviating Neurological Disorders: Targeting the Wnt Signaling Pathway. *J. Agric. Food Chem.* **2024**, *72* (5), 2411–2433.
- (20) Motallebi, M.; Bhia, M.; Rajani, H. F.; Bhia, I.; Tabarrai, H.; Mohammadkhani, N.; Pereira-Silva, M.; Kasaii, M. S.; Nouri-Majd, S.; Mueller, A.-L.; et al. Naringenin: A potential flavonoid phytochemical for cancer therapy. *Life Sciences* **2022**, *305*, 120752.
- (21) Sethiya, N. K.; Ghiloria, N.; Srivastav, A.; Bisht, D.; Chaudhary, S. K.; Walia, V.; Alam, M. S. Therapeutic Potential of Myricetin in the Treatment of Neurological, Neuropsychiatric, and Neurodegenerative Disorders. *CNS & Neurological Disorders - Drug Targets- CNS & Neurological Disorders* **2024**, *23* (7), 865–882.
- (22) Bhia, M.; Motallebi, M.; Abadi, B.; Zarepour, A.; Pereira-Silva, M.; Saremnejad, F.; Santos, A. C.; Zarrabi, A.; Melero, A.; Jafari, S. M.; et al. Naringenin Nano-Delivery Systems and Their Therapeutic Applications. *Pharmaceutics* **2021**, *13* (2), 291.
- (23) Li, W. Y.; Liu, J. Y.; Wang, Z. X.; Wang, K. Y.; Huang, C. X.; He, W.; Song, J. L. Sinapic Acid Attenuates Chronic DSS-Induced Intestinal Fibrosis in C57BL/6J Mice by Modulating NLRP3 Inflammasome Activation and the Autophagy Pathway. *Ac Omega* **2024**, *9* (1), 1230–1241.
- (24) Zare, K.; Eidi, A.; Roghani, M.; Rohani, A. H. The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat. *Metab Brain Dis* **2015**, *30* (1), 205–213. From NLM.
- (25) Yang, L.; Nao, J.; Dong, X. Y. The Therapeutic Potential of Hydroxycinnamic Acid Derivatives in Parkinson's Disease: Focus on Research Advancements. *J. Agric. Food Chem.* **2023**, *71* (29), 10932–10951.
- (26) Sakamula, R.; Thong-Asa, W. Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. *Metab Brain Dis* **2018**, *33* (3), 765–773. From NLM.
- (27) Adom, K. K.; Liu, R. H. Antioxidant Activity of Grains. *J. Agric. Food Chem.* **2002**, *50* (21), 6182–6187.
- (28) Yang, J.; Chen, J.; Hao, Y.; Liu, Y. Identification of the DPPH radical scavenging reaction adducts of ferulic acid and sinapic acid and their structure-antioxidant activity relationship. *LWT* **2021**, *146*, 111411.
- (29) Ali, S. O.; Ghaiad, H. R.; Elmasry, G. F.; Mehana, N. A. Sinapic Acid Mitigates Pentylenetetrazol-induced Acute Seizures By Modulating the NLRP3 Inflammasome and Regulating Calcium/calcineurin Signaling: In Vivo and In Silico Approaches. *Inflammation* **2024**, DOI: 10.1007/s10753-024-02019-0.
- (30) Rostami, A.; Baluchnejadmojarad, T.; Roghani, M. Sinapic acid ameliorates paracetamol-induced acute liver injury through targeting oxidative stress and inflammation. *Molecular Biology Reports* **2022**, *49* (6), 4179–4191.
- (31) Ekowati, J.; Tejo, B. A.; Maulana, S.; Kusuma, W. A.; Fatriani, R.; Ramadhanti, N. S.; Norhayati, N.; Nofianti, K. A.; Sulistyowaty, M. I.; Zubair, M. S.; et al. Potential Utilization of Phenolic Acid Compounds as Anti-Inflammatory Agents through TNF- α Convertase Inhibition Mechanisms: A Network Pharmacology, Docking, and Molecular Dynamics Approach. *Ac Omega* **2023**, *8* (49), 46851–46868.
- (32) Nićiforović, N.; Abramović, H. Sinapic acid and its derivatives: natural sources and bioactivity. *Comprehensive reviews in food science and food safety* **2014**, *13* (1), 34–51.
- (33) Nićiforović, N.; Abramović, H. Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. *Compr Rev. Food Sci. Food Saf* **2014**, *13* (1), 34–51. From NLM.
- (34) Pandi, A.; Kalappan, V. M. Pharmacological and therapeutic applications of Sinapic acid—an updated review. *Mol. Biol. Rep* **2021**, *48* (4), 3733–3745. From NLM.
- (35) Masiala, A.; Vingadassalon, A.; Aurore, S. G. Polyphenols in edible plant leaves: an overview of their occurrence and health properties. *Food Funct.* **2024**, *15*, 6847.
- (36) Russo, S.; Greco, G.; Sarpietro, M. G. Assessment of Pharmacotechnological Parameters of Solid Lipid Nanoparticles as Carriers for Sinapic Acid. *Micro* **2023**, *3* (2), 510–520.
- (37) Tajik, E.; Vaezi, Z.; Tabarsa, M.; Hekmat, A.; Naderi-Manesh, H. Grafting of sinapic acid onto glucosamine nanoparticle as a potential therapeutic drug with enhanced anti-inflammatory activities in osteoarthritis treatment. *Int. J. Biol. Macromol.* **2023**, *253*, 127454.
- (38) Bin Jardan, Y. A.; Ahad, A.; Raish, M.; Al-Jenoobi, F. I. Preparation and Characterization of Transetosome Formulation for the Enhanced Delivery of Sinapic Acid. *Pharmaceutics* **2023**, *15* (10), 2391.
- (39) Malviya, N.; A, P.; Alexander, A. Comparative study on ethosomes and transfersomes for enhancing skin permeability of sinapic acid. *J. Mol. Liq.* **2023**, *383*, 122098.
- (40) A, P.; Alexander, A. Biophysical analysis on molecular interactions between chitosan-coated sinapic acid loaded liposomes and mucin. *Biochim. Biophys. Acta, Gen. Subj.* **2024**, *1868* (1), 130517.
- (41) Chen, C. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. *Oxid. Med. Cell. Longevity* **2016**, *2016*, 3571614. From NLM.
- (42) Vong, C. I.; Rathinasabapathy, T.; Moncada, M.; Komarnytsky, S. All polyphenols are not created equal: Exploring the diversity of phenolic metabolites. *J. Agric. Food Chem.* **2022**, *70* (7), 2077–2091.
- (43) El-Seedi, H. R.; El-Said, A. M. A.; Khalifa, S. A. M.; Göransson, U.; Bohlin, L.; Borg-Karlsson, A. K.; Verpoorte, R. Biosynthesis, Natural Sources, Dietary Intake, Pharmacokinetic Properties, and Biological Activities of Hydroxycinnamic Acids. *J. Agric. Food Chem.* **2012**, *60* (44), 10877–10895.
- (44) Zych, M.; Kaczmarczyk-Sedlak, I.; Wojnar, W.; Folwarczna, J. The Effects of Sinapic Acid on the Development of Metabolic Disorders Induced by Estrogen Deficiency in Rats. *Oxid. Med. Cell. Longevity* **2018**, *2018*, 9274246. From NLM.
- (45) Hameed, H.; Aydin, S.; Başaran, A. A.; Başaran, N. Assessment of cytotoxic properties of sinapic acid in vitro. *Turk. J. Pharm. Sci.* **2016**, *13* (2), 225–232.
- (46) Raish, M.; Shahid, M.; Bin Jardan, Y. A.; Ansari, M. A.; Alkhafry, K. M.; Ahad, A.; Abdelrahman, I. A.; Ahmad, A.; Al-Jenoobi, F. I. Gastroprotective Effect of Sinapic Acid on Ethanol-Induced Gastric Ulcers in Rats: Involvement of Nrf2/HO-1 and NF- κ B Signaling and Antiapoptotic Role. *Front Pharmacol* **2021**, *12*, 622815. From NLM.
- (47) Tungalag, T.; Yang, D. K. Sinapic Acid Protects SH-SY5Y Human Neuroblastoma Cells against 6-Hydroxydopamine-Induced Neurotoxicity. *Biomedicines* **2021**, *9* (3), 295. From NLM.
- (48) Prabhakar, P.; Ahmed, B. A.; Chidambaram, S. B.; Kumar, A.; Pandian, A. In Vitro Ameliorative Effects of Sinapic Acid on Parkinson Related Neurotoxicity in SHSY5Y Cell Lines. *Int. J. Nutr., Pharmacol., Neurol. Dis.* **2023**, *13* (1), 16–24.
- (49) Pari, L.; Mohamed Jalaludeen, A. Protective role of sinapic acid against arsenic-induced toxicity in rats. *Chem. Biol. Interact.* **2011**, *194* (1), 40–47. From NLM.
- (50) Qiao, H. Y.; Dahiya, J. P.; Classen, H. L. Nutritional and physiological effects of dietary sinapic acid (4-hydroxy-3,5-dimethoxy-cinnamic acid) in broiler chickens and its metabolism in the digestive tract. *Poult Sci.* **2008**, *87* (4), 719–726. From NLM.
- (51) Zou, Y.; Kim, A. R.; Kim, J. E.; Choi, J. S.; Chung, H. Y. Peroxynitrite scavenging activity of sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) isolated from *Brassica juncea*. *J. Agric. Food Chem.* **2002**, *50* (21), 5884–5890. From NLM.
- (52) Chalas, J.; Claise, C.; Edeas, M.; Messaoudi, C.; Vergnes, L.; Abella, A.; Lindenbaum, A. Effect of ethyl esterification of phenolic acids on low-density lipoprotein oxidation. *Biomed. Pharmacother* **2001**, *55* (1), 54–60. From NLM.
- (53) Niwa, T.; Doi, U.; Kato, Y.; Osawa, T. Inhibitory mechanism of sinapinic acid against peroxy nitrite-mediated tyrosine nitration of protein in vitro. *FEBS Lett.* **1999**, *459* (1), 43–46. From NLM.
- (54) Hudson, E. A.; Dinh, P. A.; Kokubun, T.; Simmonds, M. S.; Gescher, A. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and

- colon cancer cells. *Cancer Epidemiol, Biomarkers Prev.* **2000**, *9* (11), 1163–1170. From NLM.
- (55) Kampa, M.; Alexaki, V. I.; Notas, G.; Nifli, A. P.; Nistikaki, A.; Hatzoglou, A.; Bakogeorgou, E.; Kouimtzoglou, E.; Blekas, G.; Boskou, D.; et al. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. *Breast Cancer Res.* **2004**, *6* (2), R63–74. From NLM.
- (56) Lee, J. Y. Anti-inflammatory effects of sinapic acid on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. *Arch Pharm. Res.* **2018**, *41* (2), 243–250. From NLM.
- (57) Yildirim, C.; Cangi, S.; Orkmez, M.; Yilmaz, S. G.; Bozdayi, M. A.; Yamaner, H.; Cevik, S. Sinapic Acid Attenuated Cisplatin-Induced Cardiotoxicity by Inhibiting Oxidative Stress and Inflammation with GPX4-Mediated NF- κ B Modulation. *Cardiovasc Toxicol* **2023**, *23* (1), 10–22. From NLM.
- (58) Rezaei, S.; Hosseiniemehr, S. J.; Zargari, M.; Karimpour Malekshah, A.; Mirzaei, M.; Talebpour Amiri, F. Sinapic acid attenuates cyclophosphamide-induced liver toxicity in mice by modulating oxidative stress, NF- κ B, and caspase-3. *Iran J. Basic Med. Sci.* **2023**, *26* (5), 526–531. From NLM.
- (59) Ahmad, A.; Alkhafry, K. M.; Bin Jardan, Y. A.; Shahid, M.; Ansari, M. A.; Alqahtani, S.; Jan, B. L.; Al-Jenoobi, F. I.; Raish, M. Sinapic acid mitigates methotrexate-induced hepatic injuries in rats through modulation of Nrf-2/HO-1 signaling. *Environ. Toxicol* **2021**, *36* (7), 1261–1268. From NLM.
- (60) Kim, D. H.; Yoon, B. H.; Jung, W. Y.; Kim, J. M.; Park, S. J.; Park, D. H.; Huh, Y.; Park, C.; Cheong, J. H.; Lee, K. T.; et al. Sinapic acid attenuates kainic acid-induced hippocampal neuronal damage in mice. *Neuropharmacology* **2010**, *59* (1–2), 20–30. From NLM.
- (61) Huang, T.; Zhao, D.; Lee, S.; Keum, G.; Yang, H. O. Sinapic Acid Attenuates the Neuroinflammatory Response by targeting AKT and MAPK in LPS-activated microglial models. *Biomolecules & Therapeutics* **2023**, *31* (3), 276.
- (62) Poonasri, M.; Mankhong, S.; Chiranthanut, N.; Srisook, K. 4-methoxycinnamyl p-coumarate reduces neuroinflammation by blocking NF- κ B, MAPK, and Akt/GSK-3 β pathways and enhancing Nrf2/HO-1 signaling cascade in microglial cells. *Biomedicine & Pharmacotherapy* **2023**, *168*, 115808.
- (63) Shabab, T.; Khanabdali, R.; Moghadamtousi, S. Z.; Kadir, H. A.; Mohan, G. Neuroinflammation pathways: a general review. *International Journal of Neuroscience* **2017**, *127* (7), 624–633.
- (64) Dejanovic, B.; Sheng, M.; Hanson, J. E. Targeting synapse function and loss for treatment of neurodegenerative diseases. *Nat. Rev. Drug Discovery* **2024**, *23* (1), 23–42.
- (65) Wu, C.; Sun, D. GABA receptors in brain development, function, and injury. *Metab Brain Dis* **2015**, *30* (2), 367–379. From NLM.
- (66) Allen, M. J.; Sabir, S.; Sharma, S. GABA receptor. In *StatPearls [Internet]*; StatPearls Publishing: Treasure Island, FL, 2018.
- (67) Klingstedt, T.; Lantz, L.; Shirani, H.; Ge, J. Y.; Hanrieder, J.; Vidal, R.; Ghetti, B.; Nilsson, K. P. R. Thiophene-Based Ligands for Specific Assignment of Distinct $\text{A}\beta$ Pathologies in Alzheimer's Disease. *ACS Chem. Neurosci.* **2024**, *15* (7), 1581–1595.
- (68) Ni, H.; Liu, M.; Cao, M.; Zhang, L.; Zhao, Y.; Yi, L.; Li, Y.; Liu, L.; Wang, P.; Du, Q.; et al. Sinomenine regulates the cholinergic anti-inflammatory pathway to inhibit TLR4/NF- κ B pathway and protect the homeostasis in brain and gut in scopolamine-induced Alzheimer's disease mice. *Biomedicine & Pharmacotherapy* **2024**, *171*, 116190.
- (69) Shi, M.; Chu, F.; Zhu, F.; Zhu, J. Peripheral blood amyloid- β involved in the pathogenesis of Alzheimer's disease via impacting on peripheral innate immune cells. *Journal of Neuroinflammation* **2024**, *21* (1), 5.
- (70) Verma, V.; Singh, D.; Kh, R. Sinapic Acid Alleviates Oxidative Stress and Neuro-Inflammatory Changes in Sporadic Model of Alzheimer's Disease in Rats. *Brain Sci.* **2020**, *10* (12), 923. From NLM.
- (71) Sharma, M.; Tanwar, A. K.; Purohit, P. K.; Pal, P.; Kumar, D.; Vaidya, S.; Prajapati, S. K.; Kumar, A.; Dhama, N.; Kumar, S.; et al. Regulatory roles of microRNAs in modulating mitochondrial dynamics, amyloid beta fibrillation, microglial activation, and cholinergic signaling: Implications for alzheimer's disease pathogenesis. *Neuroscience & Biobehavioral Reviews* **2024**, *161*, 105685.
- (72) Ekundayo, B. E.; Obafemi, T. O.; Adewale, O. B.; Obafemi, B. A.; Oyinloye, B. E.; Ekundayo, S. K. Oxidative Stress, Endoplasmic Reticulum Stress and Apoptosis in the Pathology of Alzheimer's Disease. *Cell Biochem. Biophys.* **2024**, DOI: 10.1007/s12013-024-01248-2.
- (73) Hampel, H.; Mesulam, M.-M.; Cuello, A. C.; Farlow, M. R.; Giacobini, E.; Grossberg, G. T.; Khachaturian, A. S.; Vergallo, A.; Cavedo, E.; Snyder, P. J.; Khachaturian, Z. S. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. *Brain* **2018**, *141* (7), 1917–1933.
- (74) Chen, Y.; Lai, M.; Tao, M. Evaluating the efficacy and safety of Alzheimer's disease drugs: A meta-analysis and systematic review. *Medicine* **2024**, *103* (16), No. e37799.
- (75) Guo, H.; Wang, G.; Zhai, Z.; Huang, J.; Huang, Z.; Zhou, Y.; Xia, X.; Yao, Z.; Huang, Y.; Zhao, Z.; et al. Rivastigmine nasal spray for the treatment of Alzheimer's Disease: Olfactory deposition and brain delivery. *Int. J. Pharm.* **2024**, *652*, 123809.
- (76) Pradhan, N.; Jana, N. R. Nanomodulators That Target Alzheimer's Disease: A Review. *Acs Appl. Nano Mater.* **2024**, *7* (4), 3515–3545.
- (77) Prasanna, P.; Upadhyay, A. Flavonoid-Based Nanomedicines in Alzheimer's Disease Therapeutics: Promises Made, a Long Way To Go. *Acs Pharmacol Transl* **2021**, *4* (1), 74–95.
- (78) Alrouji, M.; Yasmin, S.; Furkan, M.; Alhumaydhi, F. A.; Sharaf, S. E.; Khan, R. H.; Shamsi, A. Unveiling the Molecular Interactions Between Human Transferrin and Limonene: Natural Compounds in Alzheimer's Disease Therapeutics. *J. Alzheimer's Dis.* **2024**, *99*, 333–343.
- (79) Al Amin, M.; Dehbina, Z.; Nafady, M. H.; Zehravi, M.; Kumar, K. P.; Haque, M. A.; Baig, M. S.; Farhana, A.; Khan, S. L.; Afroz, T.; et al. Flavonoids and Alzheimer's disease: reviewing the evidence for neuroprotective potential. *Mol. Cell. Biochem.* **2024**, DOI: 10.1007/s11010-023-04922-w.
- (80) Dutta, M. S. A study from structural insight to the antiamyloidogenic and antioxidant activities of flavonoids: scaffold for future therapeutics of Alzheimer's disease. *Medicinal Chemistry Research* **2023**, *32* (1), 15–31.
- (81) Kaur, R.; Sood, A.; Lang, D. K.; Bhatia, S.; Al-Harrasi, A.; Aleya, L.; Behl, T. Potential of flavonoids as anti-Alzheimer's agents: bench to bedside. *Environmental Science and Pollution Research* **2022**, *29* (18), 26063–26077.
- (82) Azzini, E.; Peña-Corona, S. I.; Hernández-Parra, H.; Chandran, D.; Saleena, L. A. K.; Sawikr, Y.; Peluso, I.; Dhumal, S.; Kumar, M.; Leyva-Gómez, G.; et al. Neuroprotective and anti-inflammatory effects of curcumin in Alzheimer's disease: Targeting neuroinflammation strategies. *Phytther. Res.* **2024**, *38*, 3169.
- (83) Bartra, C.; Yuan, Y.; Vurać, K.; Valdés-Quiroz, H.; García-Baucells, P.; Slevin, M.; Pastorello, Y.; Suñol, C.; Sanfeliu, C. Resveratrol Activates Antioxidant Protective Mechanisms in Cellular Models of Alzheimer's Disease Inflammation. *Antioxidants* **2024**, *13* (2), 177.
- (84) Alam, M. Z.; Bagabir, H. A.; Zaher, M. A. F.; Alqurashi, T. M.; Alghamdi, B. S.; Ashraf, G. M.; Kazi, M. Naringenin as a potent inhibitor molecule for targeting microtubule affinity-regulating kinase 4 (mark4): a molecular docking and in vitro study for therapeutics of Alzheimer's disease. *Adv. Life Sci.* **2024**, *11* (1), 136–143.
- (85) Dastan, M.; Rajaei, Z.; Sharifi, M.; Salehi, H. Crocin improves cognitive impairment in LPS-treated rats by anti-apoptotic, anti-inflammatory and antioxidant activities. *Res. Square* **2024**, DOI: 10.21203/rs.3.rs-3862785/v1.
- (86) Lee, H. E.; Kim, D. H.; Park, S. J.; Kim, J. M.; Lee, Y. W.; Jung, J. M.; Lee, C. H.; Hong, J. G.; Liu, X.; Cai, M.; et al. Neuroprotective effect of sinapic acid in a mouse model of amyloid β 1–42 protein-induced Alzheimer's disease. *Pharmacol. Biochem. Behav.* **2012**, *103* (2), 260–266.

- (87) Shahmohamady, P.; Eidi, A.; Mortazavi, P.; Panahi, N.; Minai-Tehrani, D. Effect of sinapic acid on memory deficits and neuronal degeneration induced by intracerebroventricular administration of streptozotocin in rats. *Polish Journal of Pathology* **2018**, *69* (3), 266–277.
- (88) Bais, S.; Kumari, R.; Prashar, Y. Therapeutic effect of Sinapic acid in aluminium chloride induced dementia of Alzheimer's type in rats. *J. Acute Dis.* **2017**, *6* (4), 154–162.
- (89) Lee, I.-S.; Choi, G.-Y.; Sreelatha, I.; Yoon, J.-W.; Youn, S.-H.; Maeng, S.; Park, J.-H. Effect of sinapic acid on scopolamine-induced learning and memory impairment in SD rats. *Brain Sciences* **2023**, *13* (3), 427.
- (90) Verma, V.; Singh, D.; Kh, R. Sinapic acid alleviates oxidative stress and neuro-inflammatory changes in sporadic model of Alzheimer's disease in rats. *Brain Sciences* **2020**, *10* (12), 923.
- (91) Xia, X. Y.; Li, H.; Xu, X. B.; Zhao, G. H.; Du, M. Facilitating Pro-survival Mitophagy for Alleviating Parkinson's Disease via Sequence-Targeted Lycopene Nanodots. *ACS Nano* **2023**, *17* (18), 17979–17995.
- (92) Hawash, M.; Qneibi, M.; Natsheh, H.; Mohammed, N. H.; Abu Hamda, L.; Kumar, A.; Olech, B.; Dominiak, P. M.; Bdir, S.; Bdair, M. Evaluating the Neuroprotective Potential of Novel Benzodioxole Derivatives in Parkinson's Disease via AMPA Receptor Modulation. *ACS Chem. Neurosci.* **2024**, *15*, 2334.
- (93) Holden, H.; Venkatesh, S.; Budrow, C.; Nezaria, S.; Coyle, M.; Centner, A.; Lipari, N.; McManus, G.; Bishop, C. The effects of L-DOPA on gait abnormalities in a unilateral 6-OHDA rat model of Parkinson's disease. *Physiology & Behavior* **2024**, *281*, 114563.
- (94) Kanzato, N.; Nakachi, K.; Mochizuki, S. Istradefylline/L-DOPA Parkinson's disease therapy and energy coupling. *Neurol. Clin. Neurosci.* **2024**, DOI: 10.1111/ncn3.12820.
- (95) Kalcic, N.; Peranic, N.; Mamic, I.; Beus, M.; Hall, C. R.; Smith, T. A.; Sani, M. A.; Turcic, P.; Separovic, F.; Vrcek, I. V. Selenium Nanoparticles as Potential Drug-Delivery Systems for the Treatment of Parkinson's Disease. *ACS Appl. Nano Mater.* **2023**, *6* (19), 17581–17592.
- (96) Alhassen, S.; Senel, M.; Alachkar, A. Surface Plasmon Resonance Identifies High-Affinity Binding of L-DOPA to Sidrocalin/Lipocalin-2 through Iron-Siderophore Action: Implications for Parkinson's Disease Treatment. *ACS Chem. Neurosci.* **2022**, *13* (1), 158–165.
- (97) Xie, Y.; Zhou, J.; Zhang, B.; Zhang, L.; Yang, D.; Yang, S.; Fang, L.; Lu, Y.; Du, G. Quality control of naringenin-carbamazepine drug-drug cocrystal: Quantitative analytical method construction of ATR-FTIR and Raman combined with chemometrics. *Microchemical Journal* **2024**, *202*, 110774.
- (98) Abdelkawy, Y. S.; Elharoun, M.; Sheta, E.; Abdel-Raheem, I. T.; Nematalla, H. A. Liraglutide and Naringenin relieve depressive symptoms in mice by enhancing Neurogenesis and reducing inflammation. *Eur. J. Pharmacol.* **2024**, *971*, 176525.
- (99) Tinku; Shaikh, S. A.; Priyadarsini, I. K.; Choudhary, S. Inhibition of α -Synuclein fibrillation by curcumin and difluoro boron derivatized curcumin complexes in aqueous environment. *J. Mol. Liq.* **2024**, *405*, 125063.
- (100) Kaur, H.; Bashir, B.; Kaur, A.; Singh, N.; Vishwas, S.; Kumar, P.; Dureja, H.; Chaitanya, M. V. N. L.; Singh, T. G.; Gupta, G.; et al. Unravelling role of crocin for the treatment of Alzheimer's and Parkinson's disease: sojourn from food to nanomedicine. *Phytochemistry Reviews* **2024**, DOI: 10.1007/s11101-024-09936-w.
- (101) Zare, K.; Eidi, A.; Roghani, M.; Rohani, A. H. The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat. *Metabolic brain disease* **2015**, *30*, 205–213.
- (102) Lee, S.-B.; Yang, H. O. Sinapic acid ameliorates REV-ERB α modulated mitochondrial fission against MPTP-induced Parkinson's disease model. *Biomolecules & Therapeutics* **2022**, *30* (5), 409.
- (103) Avci, B.; Günaydin, C.; Külbay, M.; Kuruca, N.; Güvenç, T.; Bilge, S. S. Neuroprotective effects of sinapic acid involve the iron regulatory role on the rotenone-induced Parkinson's disease model. *Brazilian Journal of Pharmaceutical Sciences* **2022**, *58*, No. e20942.
- (104) Prabhakar, P.; Ahmed, B. A.; Chidambaram, S. B.; Kumar, A.; Pandian, A. In Vitro Ameliorative Effects of Sinapic Acid on Parkinson Related Neurotoxicity in SHSY5Y Cell Lines. *Int. J. Nutr., Pharmacol., Neurol. Dis.* **2023**, *13*, 16–24.
- (105) Paskeh, M. D. A.; Asadi, A.; Mirzaei, S.; Hashemi, M.; Entezari, M.; Raesi, R.; Hushmandi, K.; Zarrabi, A.; Ertas, Y. N.; Aref, A. R.; et al. Targeting AMPK signaling in ischemic/reperfusion injury: From molecular mechanism to pharmacological interventions. *Cell. Signalling* **2022**, *94*, 110323.
- (106) Zheng, K.; Zhang, Y. L.; Zhang, C. W.; Ye, W. Y.; Ye, C. X.; Tan, X. X.; Xiong, Y. PRMT8 Attenuates Cerebral Ischemia/Reperfusion Injury via Modulating Microglia Activation and Polarization to Suppress Neuroinflammation by Upregulating Lin28a. *ACS Chem. Neurosci.* **2022**, *13* (7), 1096–1104.
- (107) Lee, T. K.; Hong, J.; Lee, J. W.; Kim, S. S.; Sim, H.; Lee, J. C.; Kim, D. W.; Lim, S. S.; Kang, I. J.; Won, M. H. Ischemia-Induced Cognitive Impairment Is Improved via Remyelination and Restoration of Synaptic Density in the Hippocampus after Treatment with COG-Up in a Gerbil Model of Ischemic Stroke. *Vet. Sci.* **2021**, *8* (12), 321. From NLM.
- (108) Xu, A.; Li, W.; Cai, J.; Wen, Z.; Wang, K.; Chen, Y.; Li, X.; Guan, D.; Duan, C. Screening of key functional components of Taohong Siwu Decoction on ischemic stroke treatment based on multiobjective optimization approach and experimental validation. *BMC Complement. Med. Ther.* **2023**, *23* (1), 178. From NLM.
- (109) Kumral, E.; Çetin, F. E.; Özdemir, H. N.; Çelikay, H.; Özkan, S. Post-stroke aggressive behavior in patients with first-ever ischemic stroke: underlying clinical and imaging factors. *Acta Neurologica Belgica* **2023**, *124* (1), 55–63.
- (110) Kim, Y.-O.; Lee, S.-W.; Oh, M.-S.; Lee, H. J. Effects of sinapic Acid of 4 vessel occlusion model-induced ischemia and cognitive impairments in the rat. *Clinical Psychopharmacology and Neuroscience* **2011**, *9* (2), 86.
- (111) Kim, Y. O.; Lee, S. W.; Oh, M. S.; Lee, H. J. Effects of sinapic Acid of 4 vessel occlusion model-induced ischemia and cognitive impairments in the rat. *Clin Psychopharmacol Neurosci* **2011**, *9* (2), 86–90. From NLM.
- (112) Tuo, Q. Z.; Zhang, S. T.; Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. *Med. Res. Rev.* **2022**, *42* (1), 259–305.
- (113) Kim, D. H.; Yoon, B. H.; Jung, W. Y.; Kim, J. M.; Park, S. J.; Park, D. H.; Huh, Y.; Park, C.; Cheong, J. H.; Lee, K.-T.; et al. Sinapic acid attenuates kainic acid-induced hippocampal neuronal damage in mice. *Neuropharmacology* **2010**, *59* (1–2), 20–30.
- (114) Bais, S.; Kumari, R.; Prashar, Y. Ameliorative effect of trans-sinapic acid and its protective role in cerebral hypoxia in aluminium chloride induced dementia of alzheimer's type. *CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders)* **2018**, *17* (2), 144–154.
- (115) Boland, B.; Yu, W. H.; Corti, O.; Mollereau, B.; Henriques, A.; Bezard, E.; Pastores, G. M.; Rubinstein, D. C.; Nixon, R. A.; Duchen, M. R.; et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. *Nat. Rev. Drug Discovery* **2018**, *17* (9), 660–688. From NLM.
- (116) Agrawal, M.; Biswas, A. Molecular diagnostics of neurodegenerative disorders. *Front Mol. Biosci* **2015**, *2*, 54. From NLM.
- (117) Tavan, M.; Hanachi, P.; de la Luz Cádiz-Gurrea, M.; Segura Carretero, A.; Mirjalili, M. H. Natural Phenolic Compounds with Neuroprotective Effects. *Neurochem. Res.* **2024**, *49* (2), 306–326.
- (118) Coskun, A.; Beyazcicek, E.; Beyazcicek, O.; Gok, A. Effects of Sinapic Acid on Penicillin-Induced Epileptiform Activity in Rats. *Neurophysiology* **2024**, DOI: 10.1007/s11062-024-09941-x.

■ NOTE ADDED AFTER ASAP PUBLICATION

After this paper was published ASAP July 31, 2024, corrections were made to Figures 1–5. The corrected version was reposted August 8, 2024.