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ABSTRACT

Hirschsprung disease, a congenital disease characterized by the absence of ganglion cells, presents
significant surgical challenges. Addressing a critical gap in intraoperative diagnostics, we introduce
transformative artificial intelligence approach that significantly enhances the detection of ganglion
cells in frozen sections. The data set comprises 366 frozen and 302 formalin-fixed-paraffin-
embedded hematoxylin and eosin—stained slides obtained from 164 patients from 3 centers.
The ganglion cells were annotated on the whole-slide images (WSIs) using bounding boxes. Tissue
regions within WSIs were segmented and split into patches of 2000 x 2000 pixels. A deep learning
pipeline utilizing ResNet-50 model for feature extraction and gradient-weighted class activation
mapping algorithm to generate heatmaps for ganglion cell localization was employed. The binary
classification performance of the model was evaluated on independent test cohorts. In the mul-
tireader study, 10 pathologists assessed 50 frozen WSIs, with 25 slides containing ganglion cells,
and 25 slides without. In the first phase of the study, pathologists evaluated the slides as a routine
practice. After a 2-week washout period, pathologists re-evaluated the same WSIs along with the 4
patches with the highest probability of containing ganglion cells. The proposed deep learning
approach achieved an accuracy of 91.3%, 92.8%, and 90.1% in detecting ganglion cells within WSIs in
the test data set obtained from centers. In the reader study, on average, the pathologists' diagnostic
accuracy increased from 77% to 85.8% with the model’s heatmap support, whereas the diagnosis
time decreased from an average of 139.7 to 70.5 seconds. Notably, when applied in real-world
settings with a group of pathologists, our model’s integration brought about substantial
improvement in diagnosis precision and reduced the time required for diagnoses by half. This
notable advance in artificial intelligence—driven diagnostics not only sets a new standard for
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surgical decision making in Hirschsprung disease but also creates opportunities for its wider
implementation in various clinical settings, highlighting its pivotal role in enhancing the efficacy
and accuracy of frozen sections analyses.

© 2024 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights are
reserved, including those for text and data mining, Al training, and similar technologies.

Introduction

Hirschsprung disease (HD) is a rare congenital disorder pri-
marily affecting newborns and pediatric patients.! It is charac-
terized by the absence of ganglion cells in the Meissner and
Auerbach plexuses of the distal colon, leading to impaired bowel
innervation and motility. This condition can result in functional
bowel obstruction, presenting as megacolon, chronic constipation,
recurring colitis, or a life-threatening risk of perforation.” Biopsy
and histologic examination of the affected colon segment are
imperative for HD, with a specific focus on identifying the pres-
ence or absence of ganglion cells in the neural plexuses.®

During HD surgery, the intraoperative assessment of frozen
sections (FSs) is a crucial step in determining the extent of the
diseased bowel segment for resection. Although this process in-
volves rapid freezing and staining of the tissue, the primary
challenge lies in the accurate detection of ganglion cells within
these sections. Inaccuracies in identifying these cells can arise due
to various factors such as the pathologist’s experience, intra/
interobserver variability, and the inherent morphologic diversity
of ganglion cells. These difficulties are compounded by the time-
sensitive nature of intraoperative diagnostics and the compara-
tively lower resolution of FSs as opposed to formalin-fixed
paraffin-embedded (FFPE) sections.

The diagnostic difficulties encountered in Hirschsprung
surgery have significant implications, as they may lead to 2
major types of surgical errors: under-resection and over-
resection.*® Under-resection often demands follow-up sur-
geries, escalating the risk of additional health issues. In
contrast, over-resection can lead to a spectrum of chronic
health problems due to the resultant shortened colon, such as
compromised bowel function, nutritional deficits, inconti-
nence, and an elevated risk of bowel obstruction and small
intestine bacterial overgrowth. This highlights the necessity
for enhanced intraoperative techniques to precisely identify
ganglion cells, especially in circumstances where specialized
expertise may not be readily accessible."’

To overcome these diagnostic challenges, especially in less-
experienced settings, our study proposes a deep learning model
that provides a robust and real-time solution for accurately identi-
fying ganglion cells in FSs. Our approach significantly enhances the
precision of surgical decision making in Hirschsprung operations,
thereby substantially reducing the risk of postoperative complica-
tions that often arise from misdiagnosis. Our artificial intelligence
(AI)-driven methodology introduces a novel solution in pediatric
surgical diagnostics, offering a scalable and reliable tool that can be
adapted to a variety of clinical settings and types of frozen exami-
nations. This advancement is poised to facilitate broader improve-
ments in patient outcomes and increase health care efficiency.

Our objective is to evaluate the effectiveness of this deep
learning—based decision support system in assisting pathologists
with intraoperative diagnostics by automatically detecting gan-
glion cells within hematoxylin and eosin (H&E)-stained whole-
slide images (WSIs) of frozen tissue sections (Fig. 1).

Materials and Methods
Study Design

We proposed a deep learning—based decision support tool to
enhance the accuracy and efficiency of the intraoperative diagnosis
of HD. The tool identifies the regions within WSIs where ganglion
cell appearance probability is the highest. The model is trained on a
data set of 431 WSIs from Ege University Hospital (EUH), which is
the mixture of both FFPE- and FS-WSIs. To cope with the scarcity of
high-quality frozen WSIs for HD, we build the training data set by
combining the FFPE and frozen images. The data sets were anno-
tated by 3 pathologists (E.C., G.S., and D.D.) experienced in HD by
tagging the ganglion cells in the WSIs using bounding boxes that
encompassed only the regions containing the ganglion cells.

The model’s intraoperative performance was tested exclusively
on FS-WSIs. The generalizability of the model was validated using 2
independent data sets from different hospitals. By directing pa-
thologists’ attention to specific regions in WSIs, the model mini-
mizes the requirement for reviewing the entire images. In this
study, diagnoses on FSs were confirmed by examining the corre-
sponding permanent sections. Pathologists conducted a detailed
review of the FFPE sections to verify the presence or absence of
ganglion cells identified in the FSs. Furthermore, a comprehensive
analysis was conducted to correlate the clinical history and patient
records with the diagnoses, ensuring the accuracy and relevance of
the findings. This novel approach holds significant potential for
enhancing HD diagnosis and management.

Data Collection

A meticulous data collection process was conducted to
construct a comprehensive data set for training, validating, and
testing our model. A total of 431 WSIs were acquired from the
EUH, comprising 215 slides that were FFPE sections and 216
slides that were FSs. The WSIs were subjected to careful exami-
nation (expanded upon in the data collection section), and the
presence of ganglion cells in the FSs were documented. These
observations were compared against the “gold standard” FFPE
sections.

To ensure the generalizability of our model, independent co-
horts from 2 hospitals were incorporated. The first cohort,
referred to as the Dr. Behcet Uz Hospital (BUH) cohort, consists of
197 WSIs obtained from BUH, of which 98 slides were FFPE sec-
tions, and the remaining 99 slides were FSs. The second cohort,
referred to as the Medipol University Hospital (MUH) cohort,
comprised 39 frozen WSIs acquired from MUH. The inclusion of
these diverse cohorts facilitated the capture of variations in biopsy
protocols, slide preparation techniques, staining mechanisms, and
scanner vendors, thereby encompassing a wide spectrum of HD
cases. Notably, to minimize potential confounding factors associ-
ated with daily variability in section staining and quality, archived
sections were utilized instead of generating new ones.
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Figure 1.

GC(+) Areas

GC (+) : Ganglion cell positive GC (-) : Ganglion cell negative

Workflow overview of the proposed diagnostic decision support tool. (A) This diagram provides an overview of the general workflow for the proposed diagnostic decision
support tool and how it integrates into the routine assessment of surgically excised specimens for histopathological evaluation. (B) The data set has been divided into training
and test sets, with a specific emphasis on ensuring diversity by including data from 3 distinct centers. Additionally, the data set encompasses the use of various scanning devices,
highlighting the tool’s adaptability and resilience when dealing with different imaging equipment. (C) Our ganglion cell detection tool, which produces the ganglion cell
observation probability heatmap in 2 minutes, is integrated into the frozen sectioning process as a last step. Our tool operates by taking digitized, high-resolution whole-slide
frozen-section histology images as input. After a thorough segmentation process, the system produces a set of 2000 x 2000 mini-patches for each frozen-section- whole-slide
images, and the ganglion cell probability heatmaps are generated to guide the pathologists. This strategic approach significantly enhances the speed and precision of intra-

operative diagnostic processes.

The EUH data set was divided into 3 groups: training (70%),
validation (15%), and holdout testing (15%). We ensured an equi-
table representation of ganglion cell—positive and —negative an-
notations across all parts. The independent test cohorts from BUH
and MUH were completely used to assess the model’s adaptability
to the high data variability present across different hospitals. To
ensure a robust evaluation of our deep-learning (DL) model, we
employed a randomization process to split the slides into training
and test sets.

Data Preprocessing

In this study, a thorough quality control process was imple-
mented to assess the integrity and reliability of the WSIs included
in the data set. Each WSI underwent meticulous scrutiny to
identify any potential issues related to staining procedures or
scanner artifacts. WSIs that exhibited problems or abnormalities
were promptly identified and eliminated from the data set to
maintain the overall quality and reliability of the data set.

We used the tissue segmentation pipeline from the clustering-
constrained attention multiple instance learning (CLAM)® method
for WSIs. The method allowed us to capture tissue regions and

extract patches of 2000 x 2000 pixels. These patches were sub-
sequently resized to 512 x 512 pixels using the NumPy® resize
function, which does not use any interpolation method.

Our training data set consists of positive and negative classes.
Twenty thousand patches were sampled from WSIs without
ganglion cells, forming the negative class. The positive class was
formed by extracting and resizing 4000 patches, which were
extracted from areas annotated by pathologists as containing
ganglion cells. To balance the classes, we applied a data
augmentation method that randomly altered the ganglion cells’
position within patches, thereby increasing the positive patch
count to 20,000. This strategy resulted in robust patch images
showcasing ganglion cells amidst diverse background tissues.

Data Set Labeling

The labeling process of the data set involved the annotation of
WSIs by a panel of 3 highly experienced pathologists specializing
in pediatric gastrointestinal pathology. Each pathologist inde-
pendently examined the WSIs to identify and annotate the gan-
glion cells. To ensure the accuracy and consistency of the
annotations, consensus meetings were conducted to discuss and
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resolve any discrepancies among the pathologists. In our study,
class 1 refers to slides that contain ganglion cells, whereas class
0 refers to slides that do not contain ganglion cells.

Model Learning

We utilized ResNet-50'° architecture pretrained on the
ImageNet data set!! for feature extraction. Residual networks are
widely recognized for their effectiveness in addressing the van-
ishing gradient problem and are widely used for feature extraction
in the literature. The architecture includes residual blocks con-
sisting of multiple convolutional layers, batch normalization,
activation functions, and skip connections, facilitating the learning
of intricate image representations.

The weights of the pretrained model were retained, and the
entire network was fine-tuned to adapt it specifically for the task
of ganglion cell detection in HD. Stochastic gradient descent
optimization with a learning rate of 0.001 and a momentum of
0.85 was employed to optimize the learning process. Two Nvidia
Tesla A100 GPUs were employed for training. The model was
trained for 50 epochs, utilizing a batch size of 16. The binary cross-
entropy loss function was used to measure the discrepancy be-
tween the predicted probabilities and the ground truth labels.

Furthermore, to enhance our model’s interpretability, we used
the gradient-weighted class activation mapping (Grad-CAM)'?
algorithm, which generates a heatmap by computing the
gradient of the predicted class score with respect to the feature
maps of the final layer in the model. This algorithm identifies the
most salient regions of an input image for prediction. We used
Grad-CAM to locate regions with ganglion cells and displayed a
heatmap of these regions to the pathologist. This facilitated a
targeted examination of ganglion cells and an informed inter-
pretation of the model predictions.

Model Selection

We conducted a comprehensive comparison of state-of-the-art
deep learning models, including MobileNetV2,'> MobileNetV3,'*
ResNet101,'” ResNet18,'” ResNet-50,'” Swin Transformer,'” Deep
ViT,'® EfficientViT,”” and CrossViT,'® to determine the optimal
model for our data set (Supplementary Fig. S1). The same training
parameter set was shared across all models.

Our results indicated that ResNet-50 achieved superior per-
formance over the vision transformers and other models in our
comparison. Despite certain models, such as Swin Trans former,
exhibiting higher accuracy on the EUH data set, their performance
on the independent cohort was comparatively lower.

Considering the tradeoff between inference time and accuracy,
ResNet-50 emerged as the optimal model. This finding highlights
the superiority of ResNet-50 in the context of HD diagnosis
compared with a diverse range of deep learning models. By
selecting ResNet-50 as the preferred model, we ensured efficient
and reliable diagnostic capabilities, enhancing the overall diag-
nostic accuracy and clinical utility of the developed deep learning
model.

Reader Study

We conducted a reader study with 10 pathologists to evaluate
the influence of our Al model on their decision making for
detecting ganglion cells in FSs. The study involved 2 phases with a

2-week washout period, where pathologists were presented with
50 FS-WSIs in each phase. Within these images, 25 slides con-
tained ganglion cells, whereas the other 25 slides did not include
ganglion cells. In the first phase, pathologists were provided with
the complete WSIs and were allowed to navigate the entire slide at
different magnifications, simulating the conventional diagnostic
practice. They evaluated the FS slides as they would in their
routine practice, without any Al assistance. The pathologists
recorded their diagnostic decisions, classifying each slide as
"positive” (indicating the presence of ganglion cells), "negative"
(indicating the absence of ganglion cells), or "uncertain” (sug-
gesting the need for further examination using FFPE sections). In
the second phase, after at least a 2-week washout period, the
same WSIs were presented to the pathologists along with 2
patches per slide, which had the highest probability of containing
ganglion cells as predicted by the Al model. The mean washout
period was 3.06 weeks, with an SD of +0.89 weeks. These patches
were accompanied by corresponding heatmaps to guide the pa-
thologists' attention to regions of interest. The pathologists re-
evaluated the slides, and their diagnostic decisions, and decision
times were recorded.

Results
Evaluation of Model Performance

The model achieved state-of-the-art performance on various
data sets. On the holdout EUH data set, consisting of 660 positive
patches (class 1) and 640 negative patches (class 0), it achieved
an accuracy of 91.3% and an F1 score of 91.3% for class 0, whereas
it achieved an F1 score of 91.2% for class 1. On the BUH data set,
which comprised 1523 positive patches (class 1) and 1285
negative patches (class 0), the model displayed an accuracy of
92.8% and an F1 score of 92.3% for class 0, along with a 93.2% F1
score for class 1. Similarly, on the MUH data set, consisting of 810
positive patches (class 1) and 1140 negative patches (class 0), the
model exhibited an accuracy of 90.1% and an F1 score of 91.6% for
class 0, with an 87.7% F1 score for class 1. These results were
obtained at the patch level, indicating the model’s ability to
accurately detect ganglion cells and distinguish between
different classes (Fig. 2).

Our model analyzes a complete slide within an average dura-
tion of 2 minutes, which is obtained by averaging the processing
time over 100 WSIs. The model extracts proposed ganglion cell
patches from the WSI and displays them with associated heat-
maps (Fig. 2), which enables the pathologist to make a more ac-
curate decision in a much shorter time frame, as shown in the
reader study results in Figure 3.

Model Interpretability

We demonstrated that providing heatmaps to pathologists
enhanced the accuracy of the diagnosis, as corroborated by the
reader study results in Figures 2 and 3.

We analyzed positive patches with ganglion cells and observed
that our model assigned high attention scores only to the regions
with ganglion cells. Conversely, in negative patches without
ganglion cells, the heatmaps were dispersed. These results indi-
cate that our model effectively learned to focus solely on ganglion
cells for prediction, as illustrated in Figures 2 and 3 (positive and
negative, respectively).
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Patch-level heatmaps. The figure illustrates patch-level heatmaps that highlight the regions with the highest likelihood of containing ganglion cells within 512 x 512 patches.
These heatmaps serve as a visual representation of the artificial intelligence model’s attention, revealing the specific areas it considers most indicative of ganglion cell presence in
frozen sections. Heatmaps show the highest probability region for ganglion cells on each 512 x 512 patches. Distinct variations are observed in sections of patches obtained from
different centers, notably in patches from Ege University Hospital where freezing artifacts are pronounced, and in patches from Dr. Behcet Uz Hospital where significant de-
viations in staining are evident. Freezing artifacts in patches from Ege University Hospital and variations in staining in patches from Dr. Behcet Uz Hospital complicate the optical
evaluation of sections, making it challenging to ascertain the presence of potential neural plexuses and whether they contain ganglion cells. Heatmaps in patch groups from all 3
centers highlight areas of possible ganglion cell presence within neural plexuses, thereby directing attention to these areas and facilitating the detection of ganglion cells.
Importantly, it is worth noting that the performance of the heatmaps in representing ganglion cells across all 3 data sets from different centers was successful despite the stain,

scanner, and frozen sections preparation technique differences.

Reader Study

Figure 4 illustrates the outcomes of the study, revealing
notable improvements in both accuracy and diagnosis time when
utilizing the Al model. On average, the pathologists’ accuracy
increased from 77% in phase 1 to 85.8% in phase 2 (Fig. 3). This
enhancement indicates that the Al model’s predictions, along with

the provided patches and heatmaps, effectively aided the pa-
thologists in making accurate diagnoses (Fig. 2). Furthermore, the
incorporation of the Al model resulted in a substantial reduction
in diagnosis time. The average diagnosis time decreased from
139.7 seconds in phase 1 to 70.5 seconds in phase 2 (Fig. 3). This
considerable timesaving highlights the efficiency and effective-
ness of the Al model in expediting the diagnostic process. To
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Reader study results. In each phase of the study, 10 pathologists evaluated 50 frozen-section whole-slide images, with 25 slides containing ganglion cells and 25 slides without
ganglion cells. In the first phase, pathologists navigated the entire whole-slide images at different magnifications, simulating routine practice without artificial intelligence
assistance. In the second phase, the same whole-slide images were re-evaluated with the artificial intelligence model’s heatmap support, highlighting regions with the highest
probability of containing ganglion cells. On average, the pathologists’ diagnostic accuracy increased from 77% to 85.8% after model’s heatmap support, whereas the diagnosis

time decreased from 139.7 to 70.5 seconds.

assess the accuracy achieved using the diagnostic support tool
compared with the conventional pipeline, a Wilcoxon signed-rank
test was conducted. The analysis yielded a test statistic of 0.0 with
a P value of <.01, indicating that there is a statistically significant
difference in the accuracy of ganglion cell detection between the 2
groups. This finding supports the notion that diagnostic support
tools provide sufficient clinical information to determine the
presence of ganglion cells. Apart from these, we conducted inter-
rater agreement analysis for 5 pathologists who were experts in
HD and 5 general pathologists in phases 1 and 2. The mean Cohen
kappa for the HD pathologists was 0.54 and 0.68 in phases 1 and 2,
respectively. The mean Cohen kappa for the general pathologists
was 0.31 and 0.58 in phases 1 and 2, respectively. For HD expert
pathologists, the mean kappa values for phases 1 and 2 were
compared using a paired t test. The Wilcoxon signed-rank statistic
was 0.0 with a P value of .0019. Similarly, for general pathologists,
the Wilcoxon signed-rank statistic was 7.0 with a P value of .037.
Because the P values were less than the significance level of .05,
we rejected the null hypothesis. This suggests a statistically sig-
nificant difference in mean kappa values between phases 1 and 2
for both HD and general pathologists. The readers were catego-
rized into 2 groups: general and HD pathologists. For general
pathologists, the AUC scores were 0.85, 0.90, 0.92, 0.60, and 0.82.

Their sensitivity scores were 1.00, 0.88, 0.84, 0.88, and 0.92 and
specificity scores were 0.76, 0.92, 1.00, 0.56, and 0.84. For HD
pathologists, the AUC scores were 0.85, 0.91, 0.94, 0.90, and 0.94.
Sensitivity scores for HD pathologists were 0.96, 1.00, 0.88, 0.88,
and 0.96, and their specificity scores were 0.80, 0.84, 1.00, 0.96,
and 0.92.

The proposed deep learning approach achieved an accuracy of
91.3%,92.8%, and 90.1% in detecting ganglion cells within WSIs from
the test data sets obtained from 3 centers. In the reader study, on
average, the pathologists’ diagnostic accuracy increased from 77%
to 85.8% with the model’s heatmap support. The accuracy estimate
included the observer’s scoring for all 50 slides, both with and
without ganglion cells, ensuring a comprehensive assessment of
the model’s performance. The diagnosis time decreased from an
average of 139.7 to 70.5 seconds. For a detailed comparison be-
tween the DL model’s recommendations and the pathologists’ final
choices, including percentages of adherence and deviations, refer to
Supplementary Table S1. It is important to note that the DL model
did not output a “need-paraffin” decision. It always provided a
definitive recommendation of either “positive” or “negative.” This
feature ensured that the model consistently offered actionable in-
sights, further streamlining the diagnostic process and reducing
ambiguity during intraoperative decision making.
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Figure 4.

Reader study detailed result. (A) Phase 2 clearly demonstrates a substantial increase in the correct answer rate, reflecting improved diagnostic accuracy. The integration of our
artificial intelligence (Al) model significantly raised pathologists’ diagnostic accuracy, ensuring more precise diagnoses. (B) Phase 2 reveals a marked reduction in response times,
indicating enhanced efficiency during the diagnostic process. The utilization of our Al model resulted in notably shorter response times, streamlining and expediting the
diagnostic procedure. (C) In phase 2, a conspicuous increase in the correct answers by 10 pathologists is illustrated in the red bars, suggesting improved diagnostic accuracy. The
introduction of our Al model led to a significant boost in diagnostic accuracy, as evident in the responses from the pathologists. (D, E) During phase 1, dedicated pathologists had
longer response times, whereas in phase 2, response times reduced notably in both groups. The study highlights a substantial decrease in response times in phase 2, with
dedicated pathologists particularly benefiting from this efficiency improvement. (F) A noteworthy timesaving effect is observed in both groups, with general pathologists
showing a more significant improvement. Our Al model substantially expedited the diagnostic process for all pathologists, with general pathologists benefiting most from this
efficiency enhancement. (G) In phase 1, dedicated pathologists demonstrated a noticeable increase in the correct answer rate. The diagnostic efficiency was already enhanced in
phase 1 for dedicated pathologists, laying the foundation for further improvements in phase 2. (H) Phase 2 highlights an increase in general pathologists’ diagnostic accuracy.
General pathologists witnessed a significant increase in diagnostic accuracy in phase 2, further supporting the role of the Al model in enhancing diagnostic precision. (I) Among
general pathologists, the increase in correct answers is particularly striking. The improvement in diagnostic accuracy was notably pronounced among general pathologists,
reaffirming the utility of the Al model in their diagnostic process. (J) In phase 1, both false positives and false negatives were higher, especially for false positives, whereas in
phase 2, there was a significant reduction in the “need-paraffin” responses. The Al model contributed to a substantial decrease in the necessity for paraffin sections. (K) The
increase in correct answers in phase 1 shows a more significant improvement. Phase 1 already witnessed improvements in diagnostic accuracy, setting the stage for further
enhancement in phase 2. (I) Response times were reduced in both groups during phase 2, with dedicated and general pathologists experiencing a substantial decrease in
diagnostic time. Both dedicated and general pathologists benefited from a substantial reduction in response times, highlighting the timesaving capabilities of the Al model.
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Discussion

In this study, we introduced an intraoperative decision support
tool designed to assist pathologists in diagnosing HD during sur-
gery. The tool highlights the regions of interest that likely contain
ganglion cells in WSIs, directing the pathologist’s focus effectively.
HD diagnosis is a tedious, time-consuming task that usually in-
volves looking through 10 or more sections from the biopsy
sample to conclude an intraoperative diagnosis, which presents a
challenge for the time-sensitive HD diagnosis. Compounding on
this is the fact that HD is a rare disease that is seen in ~1 in 5000
live births,'® which means that unless the pathologists examining
the slides are specialized in this area, they usually have little
experience with HD diagnosis.?’ Our model aimed to aid in this
regard by scanning the WSI of the FS in seconds and presenting
the best candidate patches for a ganglion cell and the overall de-
cision with WSI. Although there are studies supporting their
findings with clinical validation by reader study results, the
number of readers may not be sufficient for a strong claim.?! In our
reader study, all but one of the total 10 pathologists involved had
significant decision time improvement that came with no per-
formance penalty on the diagnostic accuracy. Besides, these
readers deferred the diagnosis to FFPE sections significantly less.
This could indicate that, especially in suboptimal settings where
consultation with a specialist is unavailable or would take a long
time, our model can expedite the diagnosis in this time-critical
process.

When pathologists find the signs in the FSs of the biopsy
inconclusive, they may choose to defer the evaluation to the
permanent sections. The discordance of FFPE and FS has a wide
range in the literature, with reports as low as 3%,°? and Maia®
reported a discordance rate up to 33% in a heterogeneous group
of specimens from different intestinal sites. The main factors
responsible for this discrepancy are as follows: sampling from the
transition zone, insufficient samples where all layers cannot be
seen completely,”® artifacts due to the FS,>* immature ganglion
cells, technical difficulties, and the lack of experience in HD.
Misdiagnosis of HD in FS may lead to suboptimal surgical treat-
ment and life-long disability for the patient.® We saw a significant
decline in the deferral of cases to the FFPE sections without a
penalty in diagnostic accuracy. This means that our model can
potentially prevent secondary surgeries and life-long disabilities.

Variations in section preparation, staining technique, WSI
scanner type, and FS artifacts,”” introduce difficulty in obtaining Al
performance for multicenter. Naturally, this problem is exacer-
bated when an Al model is trained on the data set from one lab-
oratory and evaluated in another. On the contrary to Schilling
et al's model,’® one of the main strengths of our Al model is that it
is trained on a large data set from a center with all of the afore-
mentioned variations present. Combined with the fact that our
model achieved good performance on holdout and independent
test sets that consisted of the entire data sets from multiple cen-
ters meant that our model could generalize to unseen data and is
robust to variations. To help even further with the generalizability,
we trained on the WSIs of both FSs and FFPE tissue sections. We
did not evaluate our model’s capabilities on FFPE tissue WSIs, but
we intend to explore this area further in future work.

Explainability is a crucial aspect of an Al tool that is designed to
help and work alongside humans. For that reason, we utilized a
convolutional neural network architecture that is commonly used
in digital pathology, ResNet-50, and incorporated a Grad-CAM
layer into our model to provide interpretable heatmaps that
highlight the regions of interest for pathologists. Our reader study
results confirm that this helps pathologists in both decision time

and diagnostic accuracy. The heatmaps from the Grad-CAM layer
also assisted in understanding if the Al model attended to the
same areas’ pathologists would attend to, indicating that the
model learned useful representations. The heatmaps showed that
the model generally attributed high importance to areas where
neural plexuses are usually located and very low importance to all
other areas. They were also low in the areas with HD-associated
signs, such as hypertrophic muscularis mucosa or hypertrophic
nerve trunks. These results indicate that our model could indeed
learn clinically meaningful and robust representations.

Alongside the rarity of the disease itself, there are usually only
a few ganglion cells in a given biopsy, depending on the size and
composition of the tissue itself,>?” which results in very high
specificity values in detection true negatives.”® This meant a
significantly sparse positive label representation in our data set,
for which we used data augmentation techniques to compensate
for. This method both made the model more robust to diverse
representations of ganglion cells and served to balance the labels
in our data set.

Our study has several limitations that should be addressed in
future work. First, our data set was relatively small and imbal-
anced, as HD is a rare condition. Therefore, although great care
was taken to ensure the highest possible diversity and quality of
our data set, our model may not capture all the possible variations
and nuances of ganglion cell morphology and distribution. To
improve our model’s performance and reliability, we need to
collect more data from diverse sources and apply data augmen-
tation techniques to increase the diversity of our training samples.
Second, our model was only evaluated on FS-WSIs, which are
typically used for intraoperative consultation. However, FS-WSIs
have lower quality and resolution than FFPE-WSIs, which are
used for definitive diagnosis. Therefore, our model may not be
able to detect subtle or ambiguous features of ganglion cells that
are more visible in FFPE-WSIs. To address this issue, we need to
test our model on both FFPE and frozen WSIs and compare its
performance with conventional histopathological methods. Third,
our model was only designed to detect ganglion cells as a binary
classification task. However, HD is a disorder with a complex set of
differential diagnoses that involve various types of nerve abnor-
malities such as hypoganglionosis, hyperganglionosis, immature
ganglia, and giant ganglia.” Therefore, our model’s inability to
distinguish between these different subtypes of nerve defects or
provide more detailed information about their severity or extent
may diminish its clinical applicability. To overcome this limitation,
we need to extend our model to perform multiclass or multilabel
classification tasks that can identify different types of nerve ab-
normalities. Fourth, because our model works on the patch level,
it currently does not utilize the clues that can be gathered outside
the immediately surrounding tissue. The hypertrophy of the
muscularis mucosa, hypertrophy of the nerve trunks, the orien-
tation of the tissue, the general quality of the staining, and the
presence of FS artifacts are all clues for experienced pathologists
to determine if a suspected cell is a ganglion cell or not. We believe
this can be explored in a further study with a larger data set and an
multiple-instance learning-like model approach to holistically
evaluate the clues in the WSI from the eyes of a neural network.
Although the traditional approach to FS analysis, which involves
examining multiple levels, achieves high diagnostic accuracy,
often approaching 100% in experienced hands, our study aimed to
evaluate the potential of the Al model to assist in scenarios with
constrained resources. Future studies should compare the Al-
assisted approach to the traditional method of examining multi-
ple levels to determine if the Al improves accuracy and speed
within this comprehensive diagnostic process. This will provide a
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clearer understanding of the Al model's practical benefits in
enhancing the accuracy and efficiency of HD diagnosis.

In conclusion, we present a deep learning model that can assist
pathologists in detecting ganglion cells in FS-WSIs during
Hirschsprung surgery. Our model has shown promising results on
both internal and external data sets, as well as providing inter-
pretable heatmaps that can facilitate diagnosis. Our study con-
tributes to the advancement of Al applications in pathology by
demonstrating how deep learning models can improve the accu-
racy and efficiency of intraoperative consultation for rare diseases
such as HD.
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